1. Sur les modèles non-linéaires autorégressifs à transition lisse et le calcul de leurs prévisions
- Author
-
Grégoire, Gabrielle and Duchesne, Pierre
- Subjects
Stationnarité ,Stationnarity ,Prévisions ponctuelles ,Time series ,Smooth transition autoregressive models ,Modèles autorégressifs à transition lisse ,Série temporelle ,Intervalles de prévision ,Prediction intervals ,Forecasting - Abstract
Ce mémoire porte sur l’étude des données dépendantes. La littérature classique a consacré beaucoup d’énergie dans l’étude de modèles qualifiés de linéaires. Ces modèles sont particulièrement utiles pour des données macroéconomiques mesurées à des périodes finalement assez longues (mois, années, etc). Lorsque les données sont mesurées à une échelle temporelle plus fine, et lorsque les données sont nombreuses, il est alors possible de de décrire le processus stochastique sous-jacent par des modèles plus élaborés, permettant de décrire les caractéristiques non-linéaires. C’est dans ce cadre moderne que s’inscrit ce mémoire. Il se propose d’étudier les modèles autorégressifs à transition lisse. Les modèles ont été introduits et popularisés par Teräsvirta (1994), entre autres. Nous concentrons notre étude sur la modélisation et les prévisions pour ces modèles. Ceux-ci étant marqués par la présence de plusieurs régimes ainsi qu’une transition particulière entre ces différents régimes, ils permettent de modéliser plus adéquatement un processus stochastique par des modèles de séries chronologiques qui affichent certains comportements non-linéaires. Notre objectif est de comparer ces modèles aux modèles autorégressifs linéaires classiques, et d’étudier si leur utilisation est marquée par une différence favorable au niveau de la prévision de valeurs futures. Il est à noter qu’une motivation première dans ce mémoire est l’élaboration de prévisions dans ces modèles. Bien que la formulation des modèles autorégressifs à transition lisse soit particulièrement attrayante, la mise en application entraîne de nombreuses complications. Entre autres, l’estimation des modèles présente des difficultés au niveau de l’obtention de valeurs estimées pour les paramètres, dû à la présence d’une composante non-linéaire dans le modèle, ce qui rend l’estimation plus complexe puisqu’elle se doit alors d’être effectuée par optimisation non-linéaire. Bien sûr, ceci est également vrai dans la classe des modèles autorégressifs à moyennes mobiles (ARMA), reposant sur le choix d’un ordre autorégressif p et moyenne mobile q. Lorsque q > 0, il est bien connu que l’optimisation est également non-linéaire. Cependant, l’expérience empirique suggère que les problèmes numériques sont moins difficiles que pour les modèles autorégressifs à transition lisse. L’estimation des erreurs standards des paramètres est également élaborée, mais possible, puisque l’obtention de la matrice des variances-covariances est souvent marquée par des difficultés calculatoires. Les prévisions pour les séries temporelles occasionnent également des problèmes dans le cadre non-linéaire. La théorie linéaire classique n’étant pas applicable en raison de la composante non-linéaire du modèle, les prévisions ponctuelles pour les modèles autorégressifs à transition lisse doivent être effectuées à l’aide de différentes méthodes plus ou moins complexes, dont certaines mènent à un biais pour les prévisions ponctuelles aux temps supérieurs à un et d’autres deviennent rapidement difficiles à obtenir lorsque les temps de prévisions sont grands. Pour les intervalles de prévision, ils doivent également être mesurés avec des méthodes de ré-échantillonnage puisque la théorie linéaire n’est pas applicable. En fait, il peut être affirmé qu’une contribution originale du mémoire est une étude détaillée des prévisions et des intervalles de prévision dans nos modèles. Dans le premier chapitre, nous présentons les séries temporelles ainsi que les modèles autorégressifs linéaires classiques principaux s’y rattachant. Nous élaborons les modèles non-linéaires ainsi que le modèle autorégressif à transition lisse univarié, en plus de ses caractéristiques principales et des conditions de sa stationnarité. Dans le deuxième chapitre, nous développons les techniques d’estimation reliées aux modèles autorégressifs à transition lisse. En particulier, nous élaborons les étapes d’ajustement du modèle, soit la spécification, l’estimation et l’évaluation. La spécification comprend entre autres les tests de linéarité, étape nécessaire afin de justifier l’utilisation des modèles autorégressifs à transition lisse. L’estimation est effectuée par optimisation non-linéaire avec recherche quadrillée pour trouver les valeurs initiales. Dans le troisième chapitre, nous présentons les méthodes de prévision pour les modèles autorégressifs linéaires classiques et pour les modèles autorégressifs à transition lisse. Plus particulièrement, nous élaborons les difficultés d’application des méthodes de prévision habituelles dans le cadre des modèles non-linéaires, et les méthodes permettant de contourner ces difficultés. Nous définissons également les intervalles de prévision et les méthodes pour déterminer ces intervalles. Dans le quatrième chapitre, nous appliquons la théorie définie précédemment lors de simulations empiriques, avec pour but de comparer les modèles linéaires aux modèles autorégressifs à transition lisse, et nous discutons des résultats obtenus. Dans le cinquième chapitre, nous appliquons la théorie à une série temporelle représentant les rendements quotidiens du fonds négocié en bourse SPDR (pour Standard & Poor’s Depositary Receipts) suivant l’indice boursier S&P 500 (SPY ), et nous comparons nos résultats avec ceux disponibles dans la littérature, tant au niveau de l’estimation des modèles autorégressifs à transition lisse qu’à la performance des prévisions ponctuelles et intervalles de prévision. Nous finissons par une conclusion. Tous les codes utiles pour reproduire les résultats de simulations et d’analyse de données sont disponibles sur demande., This master’s thesis focuses on the study of dependent data. Classical literature has been widely focused on models described as linear. These models find great use when applied to macroeconomics data that are measured with relatively long time span (months, years, etc). When the data are measured using a shorter time span, and when the data are plentiful, it is then possible to describe the underlying stochastic process using more sophisticated models, which allows for proper modelling of the data’s nonlinear characteristics. It is in that contemporary setting that this master’s thesis takes place. It focuses on smooth transition autoregressive models, introduced and popularized by many authors including Teräsvirta (1994). We focus our study on modelling and forecasting for these models. As they are characterized by multiple regimes and a specific transition between those regimes, the smooth transition autoregressive models may allow for a more adequate modelling of a stochastic process using time series models that show nonlinear components. Our goal is to compare these models with the linear autoregressive models, and to study if they allow for more accurate forecasts. Thus, a main focus of this thesis is the elaboration of a forecasting system for these models. Although the use of smooth transition autoregressive models may seem enticing, applying the models to data brings its own share of complications, especially regarding parameters estimation. The estimation of the model sometimes has trouble converging due to a nonlinear component in the model, therefore requiring non-linear optimisation which is more complex. Of course, this is also true for the class of autoregressive moving average models (ARMA), which rely on the choice of autoregressive order p and moving average q. When q > 0, it is well-known that optimisation is nonlinear as well. However, empirical evidence suggests that numerical problems are less difficult than for smooth transition autoregressive models. The estimation of standard deviations of the parameters may also be difficult to obtain since the calculation of the variance-covariance matrix may be affected by computing issues. Forecasting for time series also poses issues for nonlinear time series. Classic linear theory is not applicable due to the nonlinear component in the model, and therefore point forecasting for smooth transition autoregressive models requires the use of other methods that vary in complexity, some which cause a bias for forecasts of lead times strictly larger than one which increase drastically in difficulty for longer lead times. For prediction intervals, because the linear theory is not applicable, they must be obtained using resampling methods. In fact, it can be asserted that an original contribution from this thesis is an elaborate and detailed study of point forecasting and forecast intervals for the models. In the first chapter, we introduce time series and classic linear models that are used to model time series. We elaborate nonlinear models and the univariate smooth transition autoregressive models, as well as the main characteristics and stationarity conditions for these models. In the second chapter, we develop estimation methods for smooth transition autoregressive models. The modelling process includes specification, estimation and evaluation of the model. Specification includes linearity tests for the data, which is required and justifies the use of nonlinear time series models. Estimation is done by nonlinear optimisation, and by finding its starting values using a grid search. In the third chapter, we present forecasting methods for classic linear autoregressive models and smooth transition autoregressive models. We elaborate the problems encountered when applying conventional theory to nonlinear models, and the methods to overcome these issues. We also define prediction intervals and how to obtain them. In the fourth chapter, we apply the theory of prior chapters to empirical simulations, with the goal of comparing linear autoregressive models to smooth transition autoregressive ones, focusing on modelling and both point and interval forecasting. We discuss our results. In the fifth chapter, we apply the theory to a time series representing daily returns of the SPDR S&P 500 stock market index (SPY ). We compare our results with those available in the literature, for both estimation of the smooth transition autoregressive models and point forecasting and prediction intervals performance. We then conclude the thesis.
- Published
- 2019