4 results on '"Aquilué, Núria"'
Search Results
2. The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes.
- Author
-
Aquilué, Núria, Fortin, Marie-Josée, Messier, Christian, and Brotons, Lluís
- Subjects
- *
WILDFIRES , *FOREST fires , *FOREST conversion , *WILDFIRE prevention , *FIREFIGHTING , *VEGETATION dynamics , *FARMS - Abstract
In densely populated fire-prone regions, interactions between global change drivers, such as land-cover changes and climate change, may increase the frequency and severity of wildfires impacting forest ecosystems, thus diminishing their capability of provisioning key ecosystem goods and services for these societies. Yet, landscape mosaics play a crucial role in fire dynamics and behaviour. Here, we argue that promoting heterogeneous agro-forest mosaics could reduce the area affected by future fires. Specifically, we evaluated 24 landscape-scale management scenarios based on agricultural conversion, i.e. the creation of new agricultural land, that also explicitly incorporated fire suppression. Scenarios differed in the annual rate of such conversion, the spatial pattern (aggregate vs. scattered), and the location of new agricultural patches. To quantify the interactions between vegetation dynamics, fires, land-cover changes, and fire suppression, we coupled two spatially explicit models: a landscape dynamic fire-succession model and a land-cover change model. When applied to the Mediterranean region of Catalonia (NE Spain), new landscape mosaics favoured firefighting extinction capacity only after 15 years (on average) of cumulative land transformations. Agricultural conversion of at least 100 km2 year−1 was required to reduce total area burnt. A conversion rate of 200 km2 year−1 substantially improved fire suppression effectiveness, but subsequent conversion increases did not. When aggregated, new agriculture patches contributed more effectively to reduction in total area burnt and decreased the edge effect on remaining forest patches. Agricultural conversion in Mediterranean landscapes opens a new window for long-term spatial planning aimed at minimizing negative impacts of wildfire on forest ecosystems. These alternative strategies could help to develop landscape management practices in other fire-prone regions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain.
- Author
-
Gil-Tena, Assu, Aquilué, Núria, Duane, Andrea, Cáceres, Miquel, and Brotons, Lluís
- Subjects
- *
FOREST fires , *FOREST management , *LANDSCAPE protection , *GLOBAL environmental change , *AFFORESTATION , *FORESTRY & climate - Abstract
Afforestation after land abandonment and the occurrence of large fires have significantly altered the composition of pine-oak ecosystems in the Mediterranean since 1950s, the latter favouring the prevalence of oak forests and shrublands to that of pine forests. Nevertheless, our ability to integrate the processes driving these changes in modelling tools and to project them under future global change scenarios is scarce. This study aims at investigating how Mediterranean forest landscape composition and seral stages may be affected by mid-term changes in fire regime and climate. Taking Catalonia (NE Spain) as study area, we predicted yearly changes in forest landscape composition using the MEDFIRE model which allows assessing the effects of different fire regimes on landscape dynamics such as post-fire regeneration and afforestation. We considered three climatic treatments based on observed and projected climate, two fire regimes largely differing in the amount of area burnt and the number of large fires, and two fire suppression strategies. While projected afforestation continued to increase forest cover in the 2050 horizon, a climate-related harsher fire regime (higher amounts of area burnt) accelerated a shift towards landscapes progressively dominated by oaks and shrublands, thus precluding general forest maturation. Fire-sensitive pine species contributed to net forest cover loss in the worst scenarios. An active fire suppression strategy partially compensated the effects of a climate-related harsher fire regime on pine forest loss and rejuvenation, whereas variability in climate projections weakly affected spatial fire allocation and afforestation. Our results highlight the need to explicitly incorporate fire suppression strategies in forest landscape composition forecasts in the Mediterranean. At mid-term, large-scale afforestation, post-fire forest rejuvenation and landscape composition changes may alter forest ecosystem functioning and potentially interact with fire suppression planning. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
4. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests.
- Author
-
Regos, Adrián, Aquilué, Núria, Retana, Javier, De Cáceres, Miquel, and Brotons, Lluís
- Subjects
- *
FOREST fires , *FIREFIGHTING , *FORESTS & forestry , *WILDFIRES , *FUEL reduction (Wildfire prevention) , *TWENTIETH century - Abstract
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.