1. Lower Bounds for Sorting 16, 17, and 18 Elements
- Author
-
Stober, Florian and Weiß, Armin
- Subjects
FOS: Computer and information sciences ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) - Abstract
It is a long-standing open question to determine the minimum number of comparisons $S(n)$ that suffice to sort an array of $n$ elements. Indeed, before this work $S(n)$ has been known only for $n\leq 22$ with the exception for $n=16$, $17$, and $18$. In this work, we fill that gap by proving that sorting $n=16$, $17$, and $18$ elements requires $46$, $50$, and $54$ comparisons respectively. This fully determines $S(n)$ for these values and disproves a conjecture by Knuth that $S(16) = 45$. Moreover, we show that for sorting $28$ elements at least 99 comparisons are needed. We obtain our result via an exhaustive computer search which extends previous work by Wells (1965) and Peczarski (2002, 2004, 2007, 2012). Our progress is both based on advances in hardware and on novel algorithmic ideas such as applying a bidirectional search to this problem.
- Published
- 2022
- Full Text
- View/download PDF