1. Electrical Properties of Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon
- Author
-
Pasquale Scarlino, Karl Petersson, S. Yadav, J. Karthik, D. M. T. van Zanten, Michael J. Manfra, Geoffrey C. Gardner, M. Eichinger, Sergei Gronin, L. O. Andersen, A. Hertel, and Charles Marcus
- Subjects
Josephson effect ,Materials science ,Silicon ,FOS: Physical sciences ,ENERGY-GAP STRUCTURE ,General Physics and Astronomy ,chemistry.chemical_element ,Substrate (electronics) ,EPITAXY ,Superconductivity (cond-mat.supr-con) ,Planar ,Condensed Matter::Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Superconductivity ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,business.industry ,Condensed Matter - Superconductivity ,Transmon ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,SUPERCURRENT ,Semiconductor ,chemistry ,Product (mathematics) ,business ,QUANTUM ,JOSEPHSON - Abstract
We present a superconductor-semiconductor materials system that is both scalable and monolithically integrated on a silicon substrate. It uses selective-area growth of $\mathrm{Al}$-$\mathrm{In}\mathrm{As}$ hybrid structures on a planar III-V buffer layer, grown directly on a high-resistivity silicon substrate. We characterize the electrical properties of this materials system at millikelvin temperatures and observe a high average field-effect mobility of $\ensuremath{\mu}\ensuremath{\approx}3200\phantom{\rule{0.2em}{0ex}}{\mathrm{cm}}^{2}\mathrm{/Vs}$ for the $\mathrm{In}\mathrm{As}$ channel and a hard induced superconducting gap. Josephson junctions exhibit a high interface transmission, $\mathcal{T}\ensuremath{\approx}0.75$, a gate-voltage-tunable switching current with a product of critical current and normal state resistance, ${I}_{C}{R}_{N}\ensuremath{\approx}83\phantom{\rule{0.2em}{0ex}}\ensuremath{\mu}\mathrm{V}$, and signatures of multiple Andreev reflections. These results pave the way for scalable and high-coherence gate-voltage-tunable transmon devices and other superconductor-semiconductor hybrids fabricated directly on silicon.
- Published
- 2021