1. Null geodesics and QNMs in the field of regular black holes
- Author
-
Anil Kumar Yadav, Parthapratim Pradhan, Sayeedul Islam, Farook Rahaman, and Monimala Mondal
- Subjects
Physics ,Geodesic ,Field (physics) ,Astrophysics::High Energy Astrophysical Phenomena ,Null (mathematics) ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Photon sphere ,General Relativity and Quantum Cosmology ,Space and Planetary Science ,Mathematics::Differential Geometry ,Mathematical Physics ,Mathematical physics - Abstract
We analyze the null geodesics of regular black holes. A detailed analysis of geodesic structure both null geodesics and time-like geodesics have been investigated for the said black hole. As an application of null geodecics, we calculate the radius of photon sphere and gravitational bending of light. We also study the shadow of the black hole spacetime. Moreover, we determine the relation between radius of photon sphere~$(r_{ps})$ and the shadow observed by a distance observer. Furthermore, We discus the effect of various parameters on the radius of shadow $R_s$. Also we compute the angle of deflection for the photons as a physical application of null-circular geodesics. We find the relation between null geodesics and quasinormal modes frequency in the eikonal approximation by computing the Lyapunov exponent. It is also shown that~(in the eikonal limit) the quasinormal modes~(QNMs) of black holes are governed by the parameter of null-circular geodesics. The real part of QNMs frequency determines the angular frequency whereas the imaginary part determines the instability time scale of the circular orbit. Next we study the massless scalar perturbations and analyze the effective potential graphically. Massive scalar perturbations also discussed. As an application of time-like geodesics we compute the innermost stable circular orbit~(ISCO) and marginally bound circular orbit~(MBCO) of the regular BHs which are closely related to the black hole accretion disk theory. In the appendix, we calculate the relation between angular frequency and Lyapunov exponent for null-circular geodesics., Comment: 24 pages, 18 figure panels, Accepted in Int. J. Mod. Phys. D
- Published
- 2021
- Full Text
- View/download PDF