1. Dynamic Glass Transition in Two Dimensions
- Author
-
Matthias Sperl, Joseph M. Brader, Markus Bayer, Florian Ebert, Matthias Fuchs, Rolf Schilling, Georg Maret, J. P. Wittmer, Erik Lange, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Monte Carlo method ,pacs:61.20.Lc ,FOS: Physical sciences ,Condensed Matter - Soft Condensed Matter ,Atomic packing factor ,01 natural sciences ,010305 fluids & plasmas ,Superposition principle ,0103 physical sciences ,pacs:64.70.Pf ,ddc:530 ,Statistical physics ,010306 general physics ,Condensed Matter - Statistical Mechanics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Dynamic glass transition ,Statistical Mechanics (cond-mat.stat-mech) ,Random close pack ,pacs:61.43.Fs ,Hard spheres ,Condensed Matter::Soft Condensed Matter ,Mode coupling ,Relaxation (physics) ,Soft Condensed Matter (cond-mat.soft) ,Glass transition ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard discs. A dynamic glass transition is found at a critical packing fraction phi_c^{d=2} = 0.697 which is above phi_c^{d=3} = 0.516 by about 35%. phi^d_c scales approximately with phi^d_{\rm rcp} the value for random close packing, at least for d=2, 3. Quantities characterizing the local, cooperative 'cage motion' do not differ much for d=2 and d=3, and we e.g. find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from MC and MD simulations. The mean squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard discs over four decades in time provided the experimental control parameter Gamma (which measures the strength of dipolar interactions) and the packing fraction phi are properly related to each other., Comment: 14 pages, 15 figures
- Published
- 2007
- Full Text
- View/download PDF