Kyoung Su Kim, Jaejin Park, Jaehyuk Choi, Hee Sool Rho, Jaeduk Goh, Seryun Kim, Sook-Young Park, Myoung-Hwan Chi, Jongsun Park, Yong-Hwan Lee, and Sunghyung Kong
The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, ΔMohox3 and ΔMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the ΔMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. ΔMohox4 and ΔMohox6 showed significantly reduced conidium size and hyphal growth, respectively. ΔMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in ΔMohox2, in which no conidia formed. ΔMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, ΔMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives., Author Summary Pathogens have evolved diverse strategies to cause disease. Magnaporthe oryzae is the fungal phytopathogen that causes rice blast and is considered an important model for understanding mechanisms in fungal development and pathogenicity. Asexual reproduction and infection-related development play key roles in M. oryzae disease development. The conidium of M. oryzae differentiates a specialized structure, an appressorium. The appressorium generates turgor pressure that allows penetration through the mechanical rupture of host cuticle layers. After colonizing host cells, the fungus produces massive conidia via conidiogenesis, serving as secondary propagules for the polycyclic disease. To elucidate molecular mechanisms in asexual reproduction and appressorium-mediated disease development, we identified eight homeobox transcription factors through a genome-wide in silico analysis. Characterization using deletion mutants revealed that each homeobox TF functions as a stage-specific regulator for conidial shape, hyphal growth, conidiation, appressorium development, and invasive growth during M. oryzae development. Notably, conidiation and appressorium development were entirely abolished in ΔMohox2 and ΔMohox7, respectively. This study also provides evidence that M. oryzae is able to cause rice blast by means of hypha-driven appressoria upon responses to host signaling factors. This study will aid in the understanding of regulatory networks associated with fungal development and pathogenicity.