1. De novo synthesis of ferrichrome by Fusarium oxysporum f. sp. cubense TR4 in response to iron starvation
- Author
-
Evans Were, Jochen Schöne, Altus Viljoen, and Frank Rasche
- Subjects
Infectious Diseases ,Fusarium ,Gene Expression Profiling ,Iron ,Genetics ,Siderophores ,Musa ,Arginine ,Plant Roots ,Ferrichrome ,Ecology, Evolution, Behavior and Systematics ,Plant Diseases - Abstract
Manipulation of iron bioavailability in the banana rhizosphere may suppress Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc). However, iron starvation induced by application of synthetic iron chelators does not effectively suppress Fusarium wilt. It is unclear whether Foc can subvert iron chelators and thereby evade iron starvation through the synthesis of iron-scavenging secondary metabolites, called siderophores. In vitro studies were conducted using iron-deficient growth medium and medium supplemented with a synthetic iron chelator, 2,2'-dipyridyl, to mimic iron starvation in Foc Tropical Race 4 (Foc TR4). Concentration of extracellular siderophores increased three-fold (p lt; 0.05) in the absence of iron. Liquid chromatography-mass spectrometry analysis detected the hydroxamate siderophore, ferrichrome, only in the mycelia of iron-starved cultures. Moreover, iron-starved cultures exhibited a reduction in total cellular protein concentration. In contrast, out of the 20 proteinogenic amino acids, only arginine increased (p lt; 0.05) under iron starvation. Our findings suggest that iron starvation does not cause a remodelling of amino acid metabolism in Foc TR4, except for arginine, which is required for biosynthesis of ornithine, the precursor for siderophore biosynthesis. Collectively, our findings suggest that biosynthesis of siderophores, particularly ferrichrome, could be a counteractive mechanism for Foc TR4 to evade iron starvation.
- Published
- 2022
- Full Text
- View/download PDF