1. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress
- Author
-
Siou-ying Lin, Meng-Ju Hung, Jörn Lämke, Isabel Bäurle, Yee-yung Charng, Hsiang-chin Liu, and Kuan-Ming Liu
- Subjects
Transcriptional Activation ,0106 biological sciences ,0301 basic medicine ,Arabidopsis ,Plant Science ,Biology ,01 natural sciences ,03 medical and health sciences ,Downregulation and upregulation ,ddc:570 ,Genetics ,Arabidopsis thaliana ,Epigenetics ,Gene ,Transcription factor ,Heat-Shock Proteins ,Institut für Biochemie und Biologie ,Arabidopsis Proteins ,Cell Biology ,biology.organism_classification ,Chromatin ,Up-Regulation ,Cell biology ,030104 developmental biology ,DNA methylation ,Transcriptome ,Priming (psychology) ,Heat-Shock Response ,Transcription Factors ,010606 plant biology & botany - Abstract
Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.
- Published
- 2018
- Full Text
- View/download PDF