1. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish.
- Author
-
Mottola G, Nikinmaa M, and Anttila K
- Subjects
- Acclimatization, Animals, HSP70 Heat-Shock Proteins genetics, Temperature, Zebrafish genetics, Gene Expression Regulation, HSP70 Heat-Shock Proteins metabolism, Heat-Shock Response, Protein Biosynthesis, Transcription, Genetic, Zebrafish metabolism
- Abstract
Virtually all organisms respond to heat shock by transcription of genes encoding for heat shock proteins (HSPs), but the mechanisms behind post-transcriptional regulation are not known in detail. When we exposed zebrafish to 5 and 7 °C above normal rearing temperature for 30 min, hsp70 mRNA expression was 28 and 150 -fold higher than in control, respectively. Protein expression, on the other hand, showed no significant change at the +5 °C and a 2-fold increase at the +7 °C exposure. This suggests that the transcription of hsp70 gene does not immediately correspond to translation to related proteins under certain stress temperatures, but, when the temperature is higher, and potentially detrimental, transcription and translation are intimately coupled. Those results confirm that temperature is an important abiotic factor involved in heat shock post-transcriptional regulation mechanisms in fish. However, further studies are needed to determine the relationship between this environmental factor and post-transcriptional regulation mechanisms. Earlier, the coupling/uncoupling of hsp transcription and translation has only been studied using cold-water fish, or zebrafish embryos. With current findings, we suggest this mechanism might be present even in adult warm water fish like the zebrafish., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF