1. Higher-page Bott–Chern and Aeppli cohomologies and applications
- Author
-
Dan Popovici, Luis Ugarte, and Jonas Stelzig
- Subjects
Pure mathematics ,Integer ,Group (mathematics) ,Applied Mathematics ,General Mathematics ,Serre duality ,Context (language use) ,Frölicher spectral sequence ,Manifold ,Mathematics - Abstract
For every positive integer r, we introduce two new cohomologies, that we call E r {E_{r}} -Bott–Chern and E r {E_{r}} -Aeppli, on compact complex manifolds. When r = 1 {r\kern-1.0pt=\kern-1.0pt1} , they coincide with the usual Bott–Chern and Aeppli cohomologies, but they are coarser, respectively finer, than these when r ≥ 2 {r\geq 2} . They provide analogues in the Bott–Chern–Aeppli context of the E r {E_{r}} -cohomologies featuring in the Frölicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page- ( r - 1 ) {(r-1)} - ∂ ∂ ¯ {\partial\bar{\partial}} -manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott–Chern and Aeppli cohomologies and for the spaces featuring in the Frölicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.
- Published
- 2021
- Full Text
- View/download PDF