Sulfonated and hydroxy-sulfonated PCBs were recently discovered by our group as new PCB soil contaminants, constituting about 1% of their parent compounds in soil. Here we investigate for the first time the bioaccumulation of these metabolites as well as hydroxy-PCBs and native PCBs in earthworms. A sequence of three experiments, at increasing complexity and ecological realism, were performed with four different earthworm species (Eisenia foetida Savigny, Lumbricus terrestris L, Allolobophora chlorotica Savigny and Aporrectodea caliginosa Savigny) exposed to contaminated soils. The first experiment confirmed that when exposing earthworms to soil contaminated with a single hexa-chlorinated congener (PCB 155), no formation of polar metabolites in earthworms could be detected. This allowed to plan the following two experiments, using a soil from a PCB contaminated site and rich in relatively high levels (10–130 μg kg−1) of hydroxy-, sulfonated-, and hydroxy-sulfonated-PCBs. Bioaccumulation factors (BAFs) and bioconcentration factors (BCFs) were then obtained in the second and third experiments, to compare the accumulation behavior of these chemicals in laboratory and natural conditions. Regressions between BAF/BCF and Log Kow/Log D, produced a variety of results, being generally significant between BCF and PCBs and not significant in the other cases. In general, the metabolites accumulated in earthworms with detectable concentrations in their tissues (8–115 μg kg−1), although sulfonated and hydroxy-sulfonated PCBs showed BAF and BCF values lower (up to two orders of magnitude) than those calculated for the parent PCBs, given their lower lipophilicity.