1. Removal of Congo Red from Wastewater Using ZnO/MgO Nanocomposites as Adsorbents: Equilibrium Isotherm Analyses, Kinetics and Thermodynamic Studies
- Author
-
Shi Fa Wang, Sheng Nan Tang, Hua Jing Gao, Chuan Yu, Hua Yang, Xian Lun Yu, Xi Ping Chen, Lei Ming Fang, and Deng Feng Li
- Subjects
General Medicine - Abstract
One step polyacrylamide gel method was used to synthesize the ZnO/MgO adsorbents and the adsorption behavior with Congo red (CR) from wastewater was extensively investigated. Various advanced techniques were applied to confirm the ZnO/MgO adsorbents consist of Zn, C, Mg and O elements and do not contain any other impurity elements. With the increase of MgO content, the morphology of ZnO/MgO adsorbent changes from the agglomeration of large particles to evenly dispersed fine particles and then to icicle structure. Results demonstrated that the adsorption process of ZnO/MgO adsorbents was significantly affected by the change in initial dye solution pH, initial adsorbent dosage, contact time and reaction temperature. The optimum pH, adsorbent dosage, contact time and reaction temperature is 9.81, 2 g /L, 65 min and 293 K, respectively. The maximum adsorption capacity of ZnO/MgO (nZnO:nMgO = 8:2) adsorbents (295.138 mg/g) for the adsorption of CR dye was approximately double that of previous reports (125 mg/g). The adsorption equilibrium data are well fitted by the Freundlich and Langmuir isotherm models. Thermodynamic studies indicate that the adsorption process of ZnO/MgO adsorbents is an exothermic process. Based on the experimental and theoretical analysis, the adsorption mechanism for the ZnO/MgO adsorbents consisted of hydrogen bonding, n-π interaction and electrostatic interaction. The present work pioneers the potential application of ZnO/MgO adsorbents for the adsorption of CR dye and further provides experimental evidence for the synthesis of other adsorbents.
- Published
- 2023
- Full Text
- View/download PDF