1. Oscillatory and intrinsic membrane properties of guinea pig nucleus prepositus hypoglossi neurons in vitro
- Author
-
Erwin Idoux, Michel Muhlethaler, L. E. Moore, Mathieu Beraneck, Mauro Serafin, Pierre-Paul Vidal, Patrice Fort, Nicolas Vibert, Neurobiologie des réseaux sensorimoteurs (NRS (U7060)), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS), Department of Biomedical Engineering [Boston], Boston University [Boston] (BU), Laboratoire de Neurobiologie des Réseaux Sensorimoteurs (LNRS), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5), Boston University [Boston] ( BU ), Laboratoire de Neurobiologie des Réseaux Sensorimoteurs ( LNRS ), Université Paris Diderot - Paris 7 ( UPD7 ) -Université Paris Descartes - Paris 5 ( UPD5 ), Centre de Recherches sur la Cognition et l'Apprentissage ( CeRCA ), Université de Poitiers-Université de Tours-Centre National de la Recherche Scientifique ( CNRS ), Centre médical universitaire de Genève (CMU), Département de Physiologie, Genève, Suisse, Centre médical universitaire, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Team Physiopathologie des Réseaux Neuronaux Responsables du Cycle Veille-Sommeil, Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Centre d'étude de la SensoriMotricité (CESEM - UMR 8194), Université Paris Descartes - Paris 5 (UPD5)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Equipe Pharmacognosie (UMR 8638), Chimie Organique, Médicinale et Extractive et Toxicologie Expérimentale (COMETE - UMR 8638), Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team Physiopathologie des Réseaux Neuronaux Responsables du Cycle Veille-Sommeil (INSERM U1028 - CNRS UMR 5292 - UNIV Lyon 1), Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS), Neurobiologie des réseaux sensorimoteurs ( NRS (U7060) ), Université Paris Diderot - Paris 7 ( UPD7 ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), and Université de Poitiers-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Action Potentials/physiology ,Periodicity ,MESH: Periodicity ,MESH : Electric Stimulation ,Physiology ,[SDV]Life Sciences [q-bio] ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Membrane Potentials/ physiology ,Medial vestibular nucleus ,Action Potentials ,MESH : Neurons, Afferent ,Membrane Potentials ,Nucleus prepositus ,0302 clinical medicine ,Oculomotor Nerve ,MESH : Membrane Potentials ,MESH : Female ,MESH: Animals ,MESH: Models, Theoretical ,ComputingMilieux_MISCELLANEOUS ,MESH: Action Potentials ,Motor Neurons ,Membrane potential ,Vestibular system ,Medulla Oblongata ,0303 health sciences ,education.field_of_study ,Chemistry ,MESH: Neurons, Afferent ,General Neuroscience ,MESH: Electric Stimulation ,MESH : Medulla Oblongata ,medicine.anatomical_structure ,Membrane ,MESH : Periodicity ,[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,MESH: Vestibular Nuclei ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Female ,MESH : Guinea Pigs ,MESH: Motor Neurons ,Oculomotor Nerve/ physiology ,MESH : Motor Neurons ,MESH : Oculomotor Nerve ,MESH : Male ,Guinea Pigs ,Models, Neurological ,Population ,Medulla Oblongata/ physiology ,Sensory system ,MESH: Guinea Pigs ,03 medical and health sciences ,MESH : Action Potentials ,MESH: Models, Neurological ,MESH: Medulla Oblongata ,Neurons, Afferent/ physiology ,medicine ,MESH : Models, Neurological ,Animals ,MESH: Membrane Potentials ,Neurons, Afferent ,education ,030304 developmental biology ,MESH: Oculomotor Nerve ,Vestibular Nuclei/physiology ,MESH : Models, Theoretical ,Vestibular Nuclei ,Models, Theoretical ,Electric Stimulation ,MESH: Male ,ddc:616.8 ,Motor Neurons/physiology ,MESH : Animals ,MESH : Vestibular Nuclei ,MESH: Female ,Neuroscience ,Nucleus ,030217 neurology & neurosurgery - Abstract
Numerous models of the oculomotor neuronal integrator located in the prepositus hypoglossi nucleus (PHN) involve both highly tuned recurrent networks and intrinsic neuronal properties; however, there is little experimental evidence for the relative role of these two mechanisms. The experiments reported here show that all PHN neurons (PHNn) show marked phasic behavior, which is highly oscillatory in ∼25% of the population. The behavior of this subset of PHNn, referred to as type D PHNn, is clearly different from that of the medial vestibular nucleus neurons, which transmit the bulk of head velocity-related sensory vestibular inputs without integrating them. We have investigated the firing and biophysical properties of PHNn and developed data-based realistic neuronal models to quantitatively illustrate that their active conductances can produce the oscillatory behavior. Although some individual type D PHNn are able to show some features of mathematical integration, the lack of robustness of this behavior strongly suggests that additional network interactions, likely involving all types of PHNn, are essential for the neuronal integrator. Furthermore, the relationship between the impulse activity and membrane potential of type D PHNn is highly nonlinear and frequency-dependent, even for relatively small-amplitude responses. These results suggest that some of the synaptic input to type D PHNn is likely to evoke oscillatory responses that will be nonlinearly amplified as the spike discharge rate increases. It would appear that the PHNn have specific intrinsic properties that, in conjunction with network interconnections, enhance the persistent neural activity needed for their function.
- Published
- 2006
- Full Text
- View/download PDF