1. Novel variants and cellular studies on patients' primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis.
- Author
-
Lattante S, Doronzio PN, Conte A, Marangi G, Martello F, Bisogni G, Meleo E, Colavito D, Del Giudice E, Patanella AK, Bernardo D, Romano A, Zollino M, and Sabatelli M
- Subjects
- Adult, Aged, Aged, 80 and over, Amyotrophic Lateral Sclerosis physiopathology, Cohort Studies, Female, Fibroblasts, Humans, Loss of Function Mutation genetics, Male, Middle Aged, Mutation, Missense genetics, Primary Cell Culture, Amyotrophic Lateral Sclerosis genetics, Genetic Association Studies, Genetic Predisposition to Disease, NIMA-Related Kinase 1 genetics
- Abstract
In the last few years, NEK1 has been identified as a new gene related to amyotrophic lateral sclerosis (ALS). Loss-of-function variants have been mostly described, although several missense variants exist, which pathogenic relevance remains to be established. We attempted to determine the contribution of NEK1 gene in an Italian cohort of 531 sporadic and familial amyotrophic lateral sclerosis (ALS) patients applying massive parallel sequencing technologies. We filtered results of NEK1 gene and identified 20 NEK1 rare variants (MAF < 0.01) in 22 patients. In particular, we found two novel frameshift variants (p.Glu929Asnfs*12 and p.Val1030Ilefs*23), 18 missense variants, including the p.Arg261His in three patients, and a novel variant in the start codon, the p.Met1?, which most likely impairs translation initiation. To clarify the role of NEK1 missense variants we investigated NEK1 expression in primary fibroblast cultures. We obtained skin biopsies from four patients with NEK1 variants and we assessed NEK1 expression by western blot and immunofluorescence. We detected a decrease in NEK1 expression in fibroblasts from patients with NEK1 variants, suggesting that missense variants in NEK1 gene may have a pathogenic role. Moreover, we observed additional variants in ALS related genes in seven patients with NEK1 variants (32%), further supporting an oligogenic ALS model., (© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF