Simon E. Olpin, Pascale de Lonlay, A. Boutron, Dimitri Schlemmer, Sacha Ferdinandusse, Carole Le Bachelier, J.F. Benoist, Toshiyuki Fukao, Jean Bastin, Seiji Yamaguchi, Brage S. Andresen, Ronald J.A. Wanders, Florence Habarou, Arnold W. Strauss, Fatima Djouadi, Gepke Visser, Djouadi, Fatima, Toxicité environnementale, cibles thérapeutiques, signalisation cellulaire (T3S - UMR_S 1124), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratory Genetic Metabolic Diseases [Academic Medical Centre], Academic Medical Center - Academisch Medisch Centrum [Amsterdam] (AMC), University of Amsterdam [Amsterdam] (UvA)-University of Amsterdam [Amsterdam] (UvA), Centre Référence des Maladies Héréditaires du Métabolisme [Paris-Robert Debré], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Robert Debré-Service de neurologie, maladies métaboliques, Département de Biochimie [AP-HP Hôpital Robert Debré], AP-HP Hôpital universitaire Robert-Debré [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de Biochimie [AP-HP Hôpital Bicêtre], AP-HP Hôpital Bicêtre (Le Kremlin-Bicêtre), University of Southern Denmark (SDU), Wilhelmina Children's Hospital [Utrecht, The Netherlands], University Medical Center [Utrecht], Génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement (Inserm U781), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Sheffield Children's NHS Foundation Trust, Gifu University Graduate School of Medicine, Shimane University, Cincinnati Children's Hospital Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, and Université Paris Descartes - Paris 5 (UPD5)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
International audience; Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 μM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes.