Andrey Sivachenko, Juan Carlos Fernández-López, Carrie Sougnez, Antonio Maffuz-Aziz, Jorge Melendez-Zajgla, Nam Pho, Rosa Rebollar-Vega, Lihua Zou, Valeria Quintanar-Jurado, Eric S. Lander, Kristin G. Ardlie, Joonil Jung, Verónica Bautista-Piña, Fujiko Duke, Shantanu Banerji, Sergio Rodriguez-Cuevas, Andrea L. Richardson, Stacey Gabriel, Kornelia Polyak, Gad Getz, Matthew Meyerson, Melissa Parkin, Kristin K. Brown, Sandra Romero-Cordoba, Kristian Cibulskis, Robert C. Onofrio, Shouyong Peng, Abbie M. Frederick, Kristin Thompson, Scott L. Carter, Dennis C. Sgroi, Joshua M. Francis, Nicolas Stransky, Daniel Auclair, Claudia Rangel-Escareño, José Baselga, Laura Uribe-Figueroa, Steven E. Schumacher, Alex H. Ramos, Alex Toker, Rameen Beroukhim, Michael S. Lawrence, Alfredo Hidalgo-Miranda, Gerardo Jimenez-Sanchez, Levi A. Garraway, Todd R. Golub, and Maria L. Cortes
Today, more than 55% of the world's breast cancer cases are diagnosed in low and middle-income countries and in 2020, more that 70% of the cases will come from the developing nations. In Mexico, breast cancer-specific mortality doubled during the past 20 years, representing the second-leading cause of death in women between 30 and 59 years and the leading cause of cancer related death in the female population. According to statistics, in Mexico a woman dies due to breast cancer every two hours. Even though breast cancer represents a major public health problem in the developing world, knowledge about the genetic and genomic structure of breast tumors in Mexican or Latin American populations is very limited. In the past four years, we have participated in the Slim Initiative of Genomic Medicine (SIGMA) Project, a collaboration between the Carlos Slim Institute of Health, the Broad Institute, and the National Institute of Genomic Medicine in Mexico city. The goal of the SIGMA project is to characterize the genomic basis of common diseases, including several types of cancer. This effort has focused on the application of whole genome and whole exome sequencing of human tumors. In the case of breast cancer, we have analyzed the whole genomes of 22 tumor/normal tissue pairs and the whole exomes of 103 tumor/normal tissues from Mexican and Vietnamese patients. Sequence analysis led to the novel identification of potential loss of function mutations of the CBFB transcription factor, and deletions of its partner RUNX1, an event which has never been previously reported in breast tumors or in any other epithelial tumor. Of clinical relevance, we also identified a somatic translocation involving MAGI3 and AKT3 in a triple negative breast tumor. Ectopic expression of the fusion transcrip leads to constitutive phosphorylation of downstream GSK and loss of contact inhibition. Most importantly, the activity of the fusion protein can be abrogated by an ATP-competitive small molecule inhibitor of AKT, potentially representing a new therapeutic avenue for these patients. In parallel with sequencing, we have also been working on the analysis of somatic DNA copy number aberrations, messenger RNA expression, and microRNA expression patterns in tumors from Mexican patients. Intrinsic breast cancer sub-typing in 125 tumors from Mexican patients showed that 13.6% of the tumors were basal-like, 16.8% were Her2-enriched, 24.8% Luminal A, 34.4% Luminal B and 10.4 normal-like. With microRNA expression, we have identified a group of microRNAs whose role in breast cancer has not been previously described and are currently analyzing differential microRNA expression across tumor sub-types, in particular triple negative tumors, where we have been able to identify at least three different tumor sub-groups based on microRNA expression patterns. Citation Format: Shantanu Banerji, Kristian Cibulskis, Claudia Rangel-Escareño, Kristin K. Brown, Scott L. Carter, Abbie M. Frederick, Michael S. Lawrence, Andrey Y. Sivachenko, Carrie Sougnez, Lihua Zou, Maria L. Cortes, Juan C. Fernandez-Lopez, Shouyong Peng, Kristin G. Ardlie, Daniel Auclair, Veronica Bautista-Piña, Fujiko Duke, Joshua Francis, Joonil Jung, Antonio Maffuz-Aziz, Robert C. Onofrio, Melissa Parkin, Nam H. Pho, Valeria Quintanar-Jurado, Alex H. Ramos, Rosa Rebollar-Vega, Sergio A. Rodríguez-Cuevas, Sandra L. Romero-Cordoba, Steven E. Schumacher, Nicolas Stransky, Kristin M. Thompson, Laura Uribe-Figueroa, Jose Baselga, Rameen Beroukhim, Kornelia Polyak, Dennis C. Sgroi, Andrea L. Richardson, Gerardo Jimenez-Sánchez, Eric S. Lander, Stacey B. Gabriel, Levi A. Garraway, Todd R. Golub, Jorge Meléndez-Zajgla, Alex Toker, Gad Getz, Matthew Meyerson, Alfredo Hidalgo-Miranda. Molecular profiling of breast cancer in Mexico: Identification of novel therapeutic targets through whole genome sequencing analysis. [abstract]. In: Proceedings of the Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2012 Oct 27-30; San Diego, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2012;21(10 Suppl):Abstract nr PL07-01.