1. Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein <scp>FANCC</scp>
- Author
-
Shaobo Wang, Tariq M. Rana, Shashi Kant Tiwari, Nianwei Lin, Jason Dang, and Yue Qin
- Subjects
Microcephaly ,Virus Replication ,Biochemistry ,Article ,Cell Line ,Zika virus ,Mice ,Fanconi anemia protein C ,03 medical and health sciences ,0302 clinical medicine ,Neural Stem Cells ,Fanconi anemia ,hemic and lymphatic diseases ,Macroautophagy ,Autophagy ,Genetics ,medicine ,Animals ,ZIKA virus replication ,Molecular Biology ,Loss function ,030304 developmental biology ,selective autophagy ,0303 health sciences ,biology ,Zika Virus Infection ,Fanconi Anemia Complementation Group C Protein ,Zika Virus ,Articles ,transcription factor E2F4 ,medicine.disease ,biology.organism_classification ,Microbiology, Virology & Host Pathogen Interaction ,Neural stem cell ,Cell biology ,Flavivirus ,Fanconi Anemia ,Viral replication ,Autophagy & Cell Death ,030217 neurology & neurosurgery ,Neuroscience - Abstract
Zika virus (ZIKV) is an emerging flavivirus, which when passed through vertical transmission from mother to developing fetus can lead to developmental abnormalities, including microcephaly. While there is mounting evidence that suggests a causal relationship between ZIKV infection and microcephaly, the mechanisms by which ZIKV induces these changes remain to be elucidated. Here, we demonstrate that ZIKV infection of neural stems cells, both in vitro and in vivo, induces macroautophagy to enhance viral replication. At the same time, ZIKV downregulates a number of essential selective autophagy genes, including the Fanconi anemia (FA) pathway genes. Bioinformatics analyses indicate that the transcription factor E2F4 promotes FANCC expression and is downregulated upon ZIKV infection. Gain and loss of function assays indicate that FANCC is essential for selective autophagy and acts as a negative regulator of ZIKV replication. Finally, we show that Fancc KO mice have increased ZIKV infection and autophagy protein levels in various brain regions. Taken together, ZIKV downregulates FANCC to modulate the host antiviral response and simultaneously attenuate neuronal growth., ZIKV hijacks the host machinery to induce macroautophagy and enhance viral replication. It also downregulates the Fanconi anemia gene FANCC that promotes antiviral selective autophagy and neurogenesis.
- Published
- 2020
- Full Text
- View/download PDF