Risal, Sanjiv, Li, Congru, Luo, Qing, Fornes, Romina, Lu, Haojiang, Eriksson, Gustaw, Manti, Maria, Ohlsson, Claes, Lindgren, Eva, Crisosto, Nicolas, Maliqueo, Manuel, Echiburu, Barbara, Recabarren, Sergio, Petermann, Teresa Sir, Benrick, Anna, Brusselaers, Nele, Qiao, Jie, Deng, Qiaolin, and Stener-Victorin, Elisabet
The transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1–F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline. CC BY 4.0© 2023 The Author(s)Correspondence: qiaolin.deng@ki.se (Q.D.), elisabet.stener-victorin@ki.se (E.S.-V.)We thank Zhiyi Zhao, Jacob Victorin, Sonja Edström, and Sara Pilström for technical assistance during animal work and molecular analysis; TSE Systems and the Metabolic Phenotyping Center at the Strategic Research program in Diabetes at the Karolinska Institutet; and the electron microscopy unit Emil at Huddinge University Hospital at the Karolinska Institutet. This work is supported by the Swedish Medical Research Council: project nos. 2018-02435 and 2022-00550 (E.S.-V.) and 2018-02557 and 2020-00253 (Q.D.); the Knut and Alice Wallenberg Foundation: 2019.0211 (Q.D.); Distinguished Investigator Grant – Endocrinology and Metabolism, Novo Nordisk Foundation: NNF22OC0072904 (E.S.-V.); the Diabetes Foundation:DIA2021-633 (E.S.-V.); the Novo Nordisk Foundation: NNF18OC0033992 and NNF19OC0056647 (E.S.-V.); the Strategic Research Program in Diabetes at the Karolinska Institutet (E.S.-V.); the Adlerbertska Research Foundation: GU 2019/86 (E.S.-V.); Karolinska Institutet KID funding: 2020-00990 (E.S.-V.); a Karolinska Instiutet faculty funded position (Q.D.); the Regional Agreement on Medical Training and Clinical Research between the Stockholm County Council and the Karolinska Institutet: 20190079 (E.S.-V.); O.E. och Edla Johanssons Stiftelse 2021 (S.R.); the Karolinska Institutet China scholarship council program (Q.L.); Magnus Bergvalls Stiftelse: 2020-03808 and 2021-04329 (S.R.); the Karolinska Institutet: 2020-02026 (S.R.); the National Fund for Scientific and Technological Development (FONDECYT): project no. 1151531 (T.S.P.); the FONDECYT: project no. 1201483 (B.E.); the National Commission for Scientific and Technological Research (CONICYT) (R.F.); HKH Kronprinsessan Lovisas förening för barnasjukvård (R.F.); and Stiftelsen Axel Tielmans minnesfond (R.F.)