4 results on '"Steinborn, Ralf"'
Search Results
2. Identification of extremely GC-rich micro RNAs for RT-qPCR data normalization in human plasma
- Author
-
Baumann, Volker, Wallner, Bernard, Steinborn, Ralf, Schwerdtfeger, Andreas R, Faridani, Omid R, and Athanasiou, Angelos-Theodoros
- Subjects
cognitive stress-coping ,stem-loop reverse-transcription quantitative PCR ,Genetics ,Molecular Medicine ,small-RNA sequencing ,miRNA expression microarray ,miRNA reference genes ,Genetics (clinical) ,human plasma miRNAs ,Circulating Micrornas ,Reference Genes ,Diagnostic Biomarkers ,Cerebrospinal-Fluid ,Mirna Expression ,Pcr ,Cancer ,Serum ,Quantification ,Strategies ,qPCR normalization - Abstract
We aimed at extending the repertoire of high-quality miRNA normalizers for reverse transcription-quantitative PCR (RT-qPCR) of human plasma with special emphasis on the extremely guanine-cytosine-rich portion of the miRNome. For high-throughput selection of stable candidates, microarray technology was preferred over small-RNA sequencing (sRNA-seq) since the latter underrepresented miRNAs with a guanine-cytosine (GC) content of at least 75% (p = 0.0002, n = 2). miRNA abundances measured on the microarray were ranked for consistency and uniformity using nine normalization approaches. The eleven most stable sequences included miRNAs of moderate, but also extreme GC content (45%–65%: miR-320d, miR-425-5p, miR-185-5p, miR-486-5p; 80%–95%: miR-1915-3p, miR-3656-5p, miR-3665-5p, miR-3960-5p, miR-4488-5p, miR-4497 and miR-4787-5p). In contrast, the seven extremely GC-rich miRNAs were not found in the two plasma miRNomes screened by sRNA-seq. Stem-loop RT-qPCR was employed for stability verification in 32 plasma samples of healthy male Caucasians (age range: 18–55 years). In general, inter-individual variance of miRNA abundance was low or very low as indicated by coefficient of variation (CV) values of 0.6%–8.2%. miR-3665 and miR-1915-3p outperformed in this analysis (CVs: 0.6 and 2.4%, respectively). The eight most stable sequences included four extremely GC-rich miRNAs (miR-1915-3p, miR-3665, miR-4787-5p and miR-4497). The best-performing duo normalization factor (NF) for the condition of human plasma, miR-320d and miR-4787-5p, also included a GC-extreme miRNA. In summary, the identification of extremely guanine-cytosine-rich plasma normalizers will help to increase accuracy of PCR-based miRNA quantification, thus raise the potential that miRNAs become markers for psychological stress reactions or early and precise diagnosis of clinical phenotypes. The novel miRNAs might also be useful for orthologous contexts considering their conservation in related animal genomes.
- Published
- 2023
3. Cross-Platform Microarray Meta-Analysis for the Mouse Jejunum Selects Novel Reference Genes with Highly Uniform Levels of Expression
- Author
-
Meyer, Florian R. L., Grausgruber, Heinrich, Binter, Claudia, Mair, Georg E., Guelly, Christian, Vogl, Claus, and Steinborn, Ralf
- Subjects
DNA microarrays ,GENE expression ,META-analysis ,REVERSE transcriptase polymerase chain reaction ,DATA analysis ,LABORATORY mice - Abstract
Reference genes (RGs) with uniform expression are used for normalization of reverse transcription quantitative PCR (RT-qPCR) data. Their optimization for a specific biological context, e.g. a specific tissue, has been increasingly considered. In this article, we compare RGs identified by expression data meta-analysis restricted to the context tissue, the jejunum of Mus musculus domesticus, i) to traditional RGs, ii) to expressed interspersed repeated DNA elements, and iii) to RGs identified by meta-analysis of expression data from diverse tissues and conditions. To select the set of candidate RGs, we developed a novel protocol for the cross-platform meta-analysis of microarray data. The expression stability of twenty-four putative RGs was analysed by RT-qPCR in at least 14 jejunum samples of the mouse strains C57Bl/6N, CD1, and OF1. Across strains, the levels of expression of the novel RGs Plekha7, Zfx, and Ube2v1 as well as of Oaz1 varied less than two-fold irrespective of genotype, sex or their combination. The gene set consisting of Plekha7 and Oaz1 showed superior expression stability analysed with the tool RefFinder. The novel RGs are functionally diverse. This facilitates expression studies over a wide range of conditions. The highly uniform expression of the optimized RGs in the jejunum points towards their involvement in tightly regulated pathways in this tissue. We also applied our novel protocol of cross-microarray platform meta-analysis to the identification of RGs in the duodenum, the ileum and the entire small intestine. The selection of RGs with improved expression stability in a specific biological context can reduce the number of RGs for the normalization step of RT-qPCR expression analysis, thus reducing the number of samples and experimental costs. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
4. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.
- Author
-
Fröhlich, Leopold F., Mrakovcic, Maria, Steinborn, Ralf, Ung-Il Chung, Bastepe, Murat, and Jüppner, Harald
- Subjects
POLYCYSTIC kidney disease ,MICE ,HYPOCALCEMIA ,METHYLATION ,GENETICS - Abstract
Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsa, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsa variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (?Nesp55p) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (ΔNesp55
m ) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsa mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts. [ABSTRACT FROM AUTHOR]- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.