1. Pangenome-Wide Association Study in the Chlamydiaceae Family Reveals Key Evolutionary Aspects of Their Relationship with Their Hosts.
- Author
-
Salgado-Morales R, Barba-Xochipa K, Martínez-Ocampo F, Dantán-González E, Hernández-Mendoza A, Quiterio-Trenado M, Rodríguez-Santiago M, and Rivera-Ramírez A
- Subjects
- Animals, Humans, Phylogeny, Host-Pathogen Interactions genetics, Evolution, Molecular, Chlamydophila genetics, Chlamydiaceae genetics, Genome, Bacterial, Genome-Wide Association Study, Chlamydia genetics, Chlamydia classification
- Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila , revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila . Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.
- Published
- 2024
- Full Text
- View/download PDF