1. Complete chloroplast genomes of six neotropical palm species, structural comparison, and evolutionary dynamic patterns.
- Author
-
Francisconi AF, Marroquín JAM, Cauz-Santos LA, van den Berg C, Martins KKM, Costa MF, Picanço-Rodrigues D, de Alencar LD, Zanello CA, Colombo CA, Hernández BGD, Amaral DT, Lopes MTG, Veasey EA, and Zucchi MI
- Subjects
- Phylogeny, Genome, Chloroplast, Arecaceae genetics, Arecaceae chemistry
- Abstract
The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF