4 results on '"Liebetrau, V."'
Search Results
2. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa.
- Author
-
Raddatz, J., Liebetrau, V., Rüggeberg, A., Hathorne, E., Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., López Correa, M., Freiwald, A., and Dullo, W.-Chr.
- Subjects
- *
STRONTIUM isotopes , *SCLERACTINIA , *DEEP-sea corals , *LOPHELIA pertusa , *GEOCHEMISTRY , *WATER temperature - Abstract
The aragonitic skeletons of scleractinian cold-water corals can serve as valuable archives in paleoceanographic studies. The potential of δ88/86Sr, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios of the cold-water coral Lophelia pertusa to record intermediate water mass properties has been investigated. Here we used samples from several locations along the European continental margin spanning a large temperature range from 6 to 14°C. Stable strontium isotope measurements were carried out with the recently developed double spike TIMS technique and our results differ from those obtained with less precise methods. In contrast to the strong positive relationship with temperature of previous studies, our results suggest that δ88/86Sr measured in scleractinian cold-water corals is not controlled by seawater temperature, but reflects the Sr isotopic composition of seawater with an offset of Δ88/86Sr=−0.196‰. As found in previous studies, the elemental ratios Sr/Ca, Li/Ca and Mg/Li measured in corals are significantly related to water temperature and do not correlate with salinity. Moreover, Sr/Ca ratios in L. pertusa display the expected inverse correlation with temperature. However, the variance in the Sr/Ca data severely limits the accuracy of paleotemperature estimates. The Li/Ca and Mg/Ca ratios reveal other influences besides temperature such as pH and/or growth or calcification rate. However, corresponding Mg/Li ratios in L. pertusa are more tightly related to temperature as they remove these secondary effects. In particular, the Mg/Li ratio in L. pertusa may serve as a new promising paleotemperature proxy for intermediate water masses. Our dataset represents the most extensive geochemical examination of L. pertusa to date, revealing a temperature sensitivity of 0.015mol/mmol/°C for Mg/Li. However, using this temperature dependence and the precision of 5.3% (2SD) only temperature variations larger than ~1.5°C can be resolved with 95% confidence. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
3. Calcium isotope values of modern and fossil cephalopod shells – Trophic level or proxy for seawater geochemistry?
- Author
-
Hoffmann, R., Riechelmann, S., Liebetrau, V., Eisenhauer, A., and Immenhauser, A.
- Subjects
- *
CALCIUM isotopes , *FOOD chains , *GEOCHEMISTRY , *SEAWATER composition , *NITROGEN isotopes , *INCINERATION - Abstract
Carbonate hardparts of marine organisms are frequently explored archives of their ambient seawater composition. Among the various materials used, the hardparts of molluscs are particularly relevant because their accretionary growth allows for the compilation of time-resolved proxy data sets. Here, we explore to which extent the calcium isotope values of aragonitic cephalopod hardparts represent proxies for seawater composition or record a trophic level signal. In a first step, we collect Ca isotope data from a diverse set of modern cephalopods, including Nautilus , Sepia and Spirula. These taxa differ in their external/internal hardparts, life spans, trophic levels, habitat depth, hinterland geology, and resulting runoff. In a second step, we have put these concepts to the test and explore the calcium isotope signatures of Lower Cretaceous (lower Albian) well-preserved cephalopods (nautiloids, ammonoids and belemnites) and bivalve shells from Madagascar. In the sense of a methodological comparison, two measurement approaches (double spike (δ44/40Ca, TIMS) and bracketing standard (δ44/42Ca, MC-ICP-MS) techniques are applied. Calcium from organic matter and intra-shell variations on bulk δ44/40Ca isotope values are explored. Four protocols (H 2 O 2 , NaOH, HClO 4 , incineration up to 250 °C including subsequent rinsing with deionised water and Ca removal) are applied to destroy organic matter in the shell material and to dissolve any non‑carbonate bound Ca, i.e., its metastable secondary Ca reservoir. These are equally successful, and the Ca isotope values of the purified carbonate phase plot on the equilibrium mass fractionation line. Samples not treated to destroy or remove their organic matter do not fall on the equilibrium mass fractionation line. Limitations of sample pre-treatment are reflected by a slight shift towards lower values in the case of incineration experiments at 650 °C. This feature is best explained in the context of a mineralogical phase transformation of aragonite to calcite. Calcium isotope values show no significant variability when sampling hardparts with different microstructures (callus, nacre, prismatic layer) and mineralised during different ontogenetic phases (outer shell, septa). Perhaps most relevant, mean δ44/40Ca (‰ SRM-915a) isotope values for Nautilus (0.72‰ ±0.19 2SD), Sepia (0.79‰ ±0.18 2SD), and Spirula (0.50‰ ±0.18 2SD) lack evidence for a significant control by trophic levels. Nitrogen isotope data and known diets for all three cephalopods serve as a litmus test for these data, which do not correlate with this dietary proxy information. These results are considered encouraging and suggest that Ca isotope values of cephalopod shells are proxies for their ambient seawater Ca isotope signatures. According to our data, however, it remains unclear to which extend cephalopod hardparts record the Ca isotopic composition of past seawater. Specifically, the data from three different modern species point to a mean Δ44/40Ca (ceph-seawater) fractionation of −1.21‰ (± 0.15 2SD). Based on our work, we present a best practice guide for cephalopod Ca isotope analysis and interpretation. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. Hydrothermal carbonate chimneys from a continental rift (Afar Rift): Mineralogy, geochemistry, and mode of formation.
- Author
-
Dekov, V.M., Egueh, N.M., Kamenov, G.D., Bayon, G., Lalonde, S.V., Schmidt, M., Liebetrau, V., Munnik, F., Fouquet, Y., Tanimizu, M., Awaleh, M.O., Guirreh, I., and Le Gall, B.
- Subjects
- *
HYDROTHERMAL carbonization , *CHIMNEYS , *MINERALOGY , *GEOCHEMISTRY , *SCATTERING (Physics) , *WATER levels , *HOT springs - Abstract
Carbonate chimney-like deposits up to 60 m high are scattered or arranged in rows at the shores of a desiccating hypersaline and alkaline lake from a continental rift setting (Lake Abhé, Afar Rift, Djibouti). The chimneys formed sub-aqueously in the lake water body at a higher water level than observed today. Alternating calcite and low-Mg calcite + silica concentric layers compose the chimney structures. Mineralogical and geochemical investigations of the chimneys, lake water, and hot spring (hydrothermal) fluids suggest that the chimneys are a result of rapid carbonate precipitation during the mixing of hydrothermal fluids with lake water. In contrast to the hot spring fluid, lake water is enriched in HREE and possesses a pronounced positive Ce anomaly, features that are preserved in the carbonate chimney layers. Mixing calculations based on Sr-isotope and concentration data indicate a hydrothermal fluid contribution of ~ 45% in the chimney interior, which decreases to ~ 4% in the external chimney layer. Sr in the hydrothermal fluids is predominantly leached from the underlying volcanic rocks, whereas the lake's Sr budget is dominated by riverine input. Considering the fluid mixing ratios calculated by Sr-data, the measured C and O isotope compositions indicate that chimney carbonates precipitated at temperatures between 14 °C (internal part) and 22 °C (external part) with δ 13 C-carbonate mainly controlled by isotope equilibrium exchange of lake water with atmospheric CO 2 . The low-Mg calcite layers, including the outermost layer, have enhanced signals of lake water inheritance based on elevated concentrations of immobile elements, ΣREE, and Sr and Ca isotope compositions. Ca-isotope data reveal that internal chimney layers formed by non-equilibrium calcite precipitation with a predominantly hydrothermal Ca source. The external low-Mg calcite layer received Ca contributions from both hydrothermal fluid and lake water, with the latter being the dominant Ca source. Highly positive δ 44/40 Ca of lake water likely reflects non-equilibrium Ca-carbonate precipitation during lake water evaporation with resulting 44 Ca enrichment of residual lake water. The strong degree of 44 Ca enrichment may point towards multiple lake drying and Ca-reservoir depletion events. Coupled C–O–Ca-isotope data of the sampled carbonate chimney suggest late-stage (low-temperature) hydrothermal carbonate chimney formation during strongly evaporative lake conditions at the time of low-Mg calcite precipitation. U–Th age dating suggests that the chimneys formed no earlier than 0.82 kyr BP (0.28 ± 0.54). [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.