Mohamed Ali Bouhifd, Alan G. Whittington, Pascal Richet, Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences, University of Missouri [Columbia] (Mizzou), University of Missouri System-University of Missouri System, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement et la société-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Jean Monnet [Saint-Étienne] (UJM), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS), University of Missouri [Columbia], Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Jean Monnet [Saint-Étienne] (UJM)
International audience; The equilibrium molar volumes of four series of anhydrous and hydrous aluminosilicate glasses and liquids (0 to 11 mol% H2O) were determined at 1 bar between 300 and 1050 K. The anhydrous compositions range from highly polymerized NaAlSi3O8 to depolymerized synthetic iron-free analogs of tephrite and foidite magma compositions (NBO/T = 0.8 and 1.5, respectively). For each sample the volume was derived from the room-temperature density of the glass and the thermal expansivity of the glass and supercooled liquid from 300 K to a temperature about 50 K higher than the standard glass transition. The partial molar coefficient of thermal expansion of water in hydrous silicate glasses is about (6.2 ± 3.5) × 10− 5 K− 1, and in the melts ranges from 11 × 10− 5 to 36 × 10− 5 K− 1. The present molar volumes of hydrous supercooled liquids are reproduced with the model of Ochs and Lange (1999) to within 1.1%, except for the hydrous foidite series. This agreement confirms that the partial molar volume of water (View the MathML sourceV¯H2O) near the glass transition cannot depend strongly on the chemical composition of the silicate end-member, nor on water speciation. In order to reproduce the molar volumes of the foidite series, a combined model (using Lange, 1997 and Courtial and Dingwell, 1999 models and values derived from the new data) is used where an excess volume term between SiO2 and CaO is introduced. Finally, our experimental data are better fit if View the MathML sourceV¯H2O = 23.8 ± 0.5 cm3 mol− 1 at 1273 K, and View the MathML sourcedV¯H2OdT = 15.9 ± 1.6 cm3 mol− 1 K− 1. Contrasting trends are also observed for the configurational contributions to the expansivity with a positive slope of View the MathML sourcedViconfdT versus water for the most polymerized base compositions (NBO/T ≤ 0.21) and a negative slope for the two most depolymerized base compositions with NBO/T of 0.86 and 1.51.