7 results on '"earthquake mechanics"'
Search Results
2. An empirically based steady state friction law and implications for fault stability
- Author
-
Elena Spagnuolo, Stefan Nielsen, Marie Violay, and G. Di Toro
- Subjects
fault stability ,slip events ,010504 meteorology & atmospheric sciences ,fault stiffness ,Seismic slip ,Satellite Geodesy: Results ,Slip (materials science) ,010502 geochemistry & geophysics ,01 natural sciences ,Instability ,Structural Geology ,friction laws ,Physics and Chemistry of Materials ,medicine ,Research Letter ,Rheology and Friction of Fault Zones ,Geodesy and Gravity ,Critical condition ,Seismology ,Solid Earth ,0105 earth and related environmental sciences ,earthquake mechanics ,Dynamics and Mechanics of Faulting ,Stiffness ,Geophysics ,Earth and Planetary Sciences (all) ,Research Letters ,Seismic Cycle Related Deformations ,Tectonophysics ,Time Variable Gravity ,Law ,Mechanics, Theory, and Modeling ,Lubrication ,General Earth and Planetary Sciences ,Seismicity and Tectonics ,Planetary Sciences: Comets and Small Bodies ,medicine.symptom ,Transient Deformation ,Geology - Abstract
Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s, Key Points We describe fault evolution over the entire seismic cycleWe describe fault stability over a wide range of experimental (and natural) conditionsWe account for the diversity of slip events observed at laboratory (and natural) scale
- Published
- 2016
- Full Text
- View/download PDF
3. Frictional properties and slip stability of active faults within carbonate-evaporite sequences: The role of dolomite and anhydrite
- Author
-
Cristiano Collettini, Marco M. Scuderi, Chris Marone, and André Niemeijer
- Subjects
010504 meteorology & atmospheric sciences ,Evaporite ,Aardwetenschappen ,Dolomite ,friction ,Compaction ,Mineralogy ,carbonate and evaporites rocks ,Slip (materials science) ,010502 geochemistry & geophysics ,01 natural sciences ,chemistry.chemical_compound ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,0105 earth and related environmental sciences ,Anhydrite ,earthquake mechanics ,rock deformation ,Geophysics ,chemistry ,Shear (geology) ,Space and Planetary Science ,Carbonate ,anhydrite ,earthquake ,dolostone ,Direct shear test ,Geology - Abstract
Seismological observations show that many destructive earthquakes nucleate within, or propagate through, thick sequences of carbonates and evaporites. For example, along the Apennines range (Italy) carbonate and evaporite sequences are present at hypocentral depths for recent major earthquakes (5.0
- Published
- 2013
4. Self-similarity of the largest-scale segmentation of the faults: Implications for earthquake behavior
- Author
-
Isabelle Manighetti, Michel Campillo, Fabrice Cotton, Dimitri Zigone, Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)
- Subjects
fault ,education.field_of_study ,010504 meteorology & atmospheric sciences ,Self-similarity ,earthquake mechanics ,Spectral properties ,Population ,fault segmentation ,Slip (materials science) ,010502 geochemistry & geophysics ,01 natural sciences ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Large earthquakes ,Earth and Planetary Sciences (miscellaneous) ,East africa ,Fault mechanics ,Segmentation ,education ,earthquakes ,Geology ,Seismology ,0105 earth and related environmental sciences - Abstract
article i nfo Article history: Earthquakes are sensitive to the along-strike segmentation of the faults they break, especially in their initiation, propagation and arrest. We examine that segmentation and search whether it shows any specific properties. We focus on the largest-scale fault segmentation which controls the largest earthquakes. It is well established that major segments within faults markedly shape their surface cumulative slip-length profiles; segments appear as large slip bumps separated by narrow, pronounced slip troughs (inter-segments). We use that property to examine the distribution (location, number, length) of the major segments in 927 active normal faults in Afar (East Africa) of various lengths (0.3-65 km), cumulative slips (1-1300 m), slip rates (0.5-5 mm/yr), and ages (10 4 -10 6 yr). This is the largest fault population ever analyzed. To identify the major bumps in the slip profiles and determine their number, location and length, we analyze the profiles using both the classical Fourier transform and a space-frequency representation of the profiles, the S-transform, which is well adapted for characterizing local spectral properties. Our work reveals the fol- lowing results: irrespective of their length, 70% of the slip profiles have a triangular envelope shape, in conflict with the elastic crack concept. Irrespective of their length, the majority of the faults (at least 50-70%) have a limited number of major segments, between 2 and 5 and more commonly equal to 3-5. The largest- scale segmentation of the faults is thus self-similar and likely to be controlled by the fault mechanics. The slip deficits at the major inter-segment slip troughs tend to smooth as the faults accumulate more slip resulting in increased connection of the major segments. The faults having accumulated more slip therefore generally appear as un-segmented (10-30%). Our observations therefore show that, whatever the fault on which they initiate, large earthquakes face the same number of major segments to potentially break. The number of segments that they eventually break seems to depend on the slip history (structural maturity) of the fault.
- Published
- 2009
- Full Text
- View/download PDF
5. Finite-fault slip models for the 15 April 1979 (Mw 7.1) Montenegro earthquake and its strongest aftershock of 24 May 1979 (Mw 6.2)
- Author
-
Anastasia Kiratzi and Christoforos Benetatos
- Subjects
Earthquake mechanics ,Slip distribution ,Focal mechanism ,Hypocenter ,Thrust ,Slip (materials science) ,Shake ,Finite-fault ,Geodesy ,Strike-slip tectonics ,Montenegro ,Geophysics ,Thrust fault ,Earthquake source ,Geology ,Seismology ,Aftershock ,Earth-Surface Processes - Abstract
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L ∼ 50 km × W ∼ 23 km. The maximum slip (∼ 2.7 m) occurred ∼ 30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred ∼ 40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is ∼ 7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.
- Published
- 2006
6. Fault geometry and earthquake mechanics
- Author
-
D. J. Andrews
- Subjects
earthquake mechanics ,Triple junction ,fault geometry ,lcsh:QC801-809 ,Elastic energy ,Geometry ,Slip (materials science) ,Mechanics ,lcsh:QC851-999 ,Elastic-rebound theory ,lcsh:Geophysics. Cosmic physics ,Geophysics ,lcsh:Meteorology. Climatology ,Dislocation ,Geology ,Slip line field ,Asperity (materials science) ,Stress concentration - Abstract
Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1) regeneration of stress irregularities in an earthquake; 2) the concentration of stress drop in an earthquake into asperities; 3) starting and stopping of earthquake slip at fault junctions, and 4) self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the volume increment for a given slip increment becomes larger. A juction with past accumulated slip ??0 is a strong barrier to earthquakes with maximum slip um < 2 (P/µ) u0 = u0/50. As slip continues to occur elsewhere in the fault system, a stress concentration will grow at the old junction. A fresh fracture may occur in the stress concentration, establishing a new triple junction, and allowing continuity of slip in the fault system. The fresh fracture could provide the instability needed to explain earthquakes. Perhaps a small fraction (on the order of P/µ) of the surface that slips in any earthquake is fresh fracture. Stress drop occurs only on this small fraction of the rupture surface, the asperities. Strain change in the asperities is on the order of P/µ. Therefore this model predicts average strais change in an earthquake to be on the order of (P/µ)2 = 0.0001, as is observed.
- Published
- 1994
- Full Text
- View/download PDF
7. Determination of Parameters Characteristic of Dynamic Weakening Mechanisms During Seismic Faulting in Cohesive Rocks
- Author
-
C. Cornelio, E. Spagnuolo, S. Aretusini, S. Nielsen, F. Passelègue, M. Violay, M. Cocco, G. Di Toro, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
experimental rock deformation ,norm based nonlinear optimization ,earthquake mechanics ,constitutive models ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,faults ,rock friction ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,Earth and Planetary Sciences (miscellaneous) ,dynamic weakening ,earthquakes, rock friction, experimental rock deformation, faults ,earthquakes - Abstract
International audience; While sliding at seismic slip-rates of ∼1 m/s, natural faults undergo an abrupt decrease of shear stress called dynamic weakening. Asperity-scale (
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.