13 results on '"Ho, Shu-peng"'
Search Results
2. Using the Commercial GNSS RO Spire Data in the Neutral Atmosphere for Climate and Weather Prediction Studies.
- Author
-
Ho, Shu-peng, Zhou, Xinjia, Shao, Xi, Chen, Yong, Jing, Xin, and Miller, William
- Subjects
- *
WEATHER forecasting , *GLOBAL Positioning System , *NUMERICAL weather forecasting , *ATMOSPHERE , *WATER vapor , *ATMOSPHERIC water vapor measurement - Abstract
Recently, the NOAA has included GNSS (Global Navigation Satellite System) Radio Occultation (RO) data as one of the crucial long-term observables for weather and climate applications. To include more GNSS RO data in its numerical weather prediction systems, the NOAA Commercial Weather Data Pilot program (CWDP) started to explore the commercial RO data available on the market. After two rounds of pilot studies, the CWDP decided to award the first Indefinite Delivery Indefinite Quantity (IDIQ) contract to GeoOptics and Spire Incs. in 2020. This study examines the quality of Spire RO data products for weather and climate applications. Spire RO data collected from commercial CubeSats are carefully compared with data from Formosa Satellite Mission 7–Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2), the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5), and high-quality radiosonde data. The results demonstrate that, despite their generally lower Signal-Noise-Ratio (SNR), Spire RO data show a pattern of lowest penetration height similar to that of COSMIC-2. The Spire and COSMIC-2 penetration heights are between 0.6 and 0.8 km altitude over tropical oceans. Although using different GNSS RO receivers, the precision of Spire STRATOS receivers is of the same quality as those of the COSMIC-2 TriG (Global Positioning System—GPS, GALILEO, and GLObal NAvigation Satellite System—GLONASS) RO Receiver System (TGRS) receivers. Furthermore, the Spire and COSMIC-2 retrieval accuracies are quite comparable. We validate the Spire temperature and water vapor profiles by comparing them with collocated radiosonde observation (RAOB) data. Generally, over the height region between 8 km and 16.5 km, the Spire temperature profiles match those from RS41 RAOB very well, with temperature biases of <0.02 K. Over the height range from 17.8 to 26.4 km, the temperature differences are ~−0.034 K, with RS41 RAOB being warmer. We also estimate the error covariance matrix for Spire, COSMIC-2, and KOMPSAT-5. The results show that the COSMIC-2 estimated error covariance values are slightly more significant than those from Spire over the oceans at the mid-latitudes (45°N–30°N and 30°S–45°S), which may be owing to COSMIC-2 SNR being relatively lower at those latitudinal zones. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Spire RO Thermal Profiles for Climate Studies: Initial Comparisons of the Measurements from Spire, NOAA-20 ATMS, Radiosonde, and COSMIC-2.
- Author
-
Jing, Xin, Ho, Shu-Peng, Shao, Xi, Liu, Tung-Chang, Chen, Yong, and Zhou, Xinjia
- Subjects
- *
ATMOSPHERIC water vapor measurement , *GLOBAL Positioning System , *NUMERICAL weather forecasting , *RADIOSONDES , *WATER vapor , *BRIGHTNESS temperature - Abstract
Global Navigation Satellite System (GNSS) Radio Occultation (RO) data play an essential role in improving numerical weather prediction (NWP) and monitoring climate change. The NOAA Commercial RO Purchase Program (CDP) purchased RO data provided by Spire Global Inc. To ensure the data quality from Spire Global Inc. is consistent with other RO missions, we need to quantify their accuracy and retrieval uncertainty carefully. In this work, Spire Wet Profile (wet temperature profile) data from 7 September 2021 to 31 October 2022, processed by the University Corporation for Atmospheric Research (UCAR), and COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere, and Climate-2/Formosa Satellite Mission 7) data are evaluated through comparison with NOAA-20 Advanced Technology Microwave Sounder (ATMS) microwave sounder measurements and collocated RS41 radiosonde measurements. Through the Community Radiative Transfer Model (CRTM) simulation, we convert the Spire and COSMIC-2 RO retrievals to ATMS brightness temperature (BT) at sounding channels CH07 to CH14 (temperature channels), with weighting function peak heights from 8 km to 35 km, and CH19 to CH22 (water vapor channels), with weighting function peak heights ranging from 3.2 km to 6.7 km, and compare the simulations with the collocated NOAA-20 ATMS measurements over ocean. Using ATMS observations as references, Spire and COSMIC-2 BTs agree well with ATMS within 0.07 K for CH07-14 and 0.20 K for CH19-22. The trends between Spire and COSMIC-2 are consistent within 0.07 K/year over the oceans for ATMS CH07-CH13 and CH19-22, indicating that Spire/COSMIC-2 wet profiles are, in general, compatible with each other over oceans. The RO retrievals and RS41 radiosonde observation (RAOB) comparison shows that above 0.2 km altitude, RS41 RAOB matches Spire/COSMIC-2 temperature profiles well with a temperature difference of <0.13 K, and the trends between Spire and COSMIC-2 are consistent within 0.08 K/year over land, indicating that Spire/COSMIC-2 wet profiles are overall compatible with each other through RS41 RAOB measurements over land. In addition, the consistency of Spire and COSMIC-2 based on different latitude intervals, local times, and signal-to-noise ratios (SNRs) through ATMS was evaluated. The results show that the performance of Spire is comparable to COSMIC-2, even though COSMIC-2 has a higher SNR. The high quality of RO profiles from Spire is expected to improve short- and medium-range global numerical weather predictions and help construct consistent climate temperature records. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Using Radio Occultation Data for Atmospheric Numerical Weather Prediction, Climate Sciences, and Ionospheric Studies and Initial Results from COSMIC-2, Commercial RO Data, and Recent RO Missions.
- Author
-
Ho, Shu-peng, Pedatella, Nick, Foelsche, Ulrich, Healy, Sean, Weiss, Jan-Peter, and Ullman, Richard
- Subjects
- *
CLIMATOLOGY , *NUMERICAL weather forecasting , *ATMOSPHERIC boundary layer , *GLOBAL Positioning System - Abstract
4) IROWG recommends that CGMS encourages ongoing and future GNSS RO and non-RO missions, including potential commercial providers of RO observations, to incorporate a complete set of ionospheric measurements. Conclusions and recommendations The increasing RO observations from COSMIC-2, commercial missions, and new international RO missions significantly impact NWP, climate and atmospheric research, and ionosphere studies. Keywords: Climatology; Data processing/distribution; Global positioning systems (GPS); Instrumentation/sensors; Remote sensing; Satellite observations EN Climatology Data processing/distribution Global positioning systems (GPS) Instrumentation/sensors Remote sensing Satellite observations E2506 E2512 7 12/12/22 20221101 NES 221101 Eighth International Radio Occultation Working Group Conference B I What i b : More than 300 people from 15 countries met to highlight the data processing and quality assessment of newly available radio occultation (RO) missions and their applications for atmospheric numerical weather prediction, climate sciences, atmospheric studies, and ionospheric studies. [Extracted from the article]
- Published
- 2022
- Full Text
- View/download PDF
5. Processing and Validation of the STAR COSMIC-2 Temperature and Water Vapor Profiles in the Neural Atmosphere.
- Author
-
Ho, Shu-peng, Kireev, Stanislav, Shao, Xi, Zhou, Xinjia, and Jing, Xin
- Subjects
- *
TEMPERATURE of stars , *OCCULTATIONS (Astronomy) , *WATER vapor , *GLOBAL Positioning System , *ATMOSPHERIC water vapor measurement , *INFORMATION storage & retrieval systems , *ATMOSPHERIC temperature , *HUMIDITY - Abstract
The global navigation satellite system (GNSS) radio occultation (RO) is becoming an essential component of National Oceanic and Atmospheric Administration (NOAA) observation systems. The constellation observing system for meteorology, ionosphere, and climate (COSMIC) 2 mission and the Formosa satellite mission 7, a COSMIC follow-on mission, is now the NOAA's backbone RO mission. The NOAA's dedicated GNSS RO SAtellite processing and science Application Center (RO-SAAC) was established at the Center for Satellite Applications and Research (STAR). To better quantify how the observation uncertainty from clock error and geometry determination may propagate to bending angle and refractivity profiles, STAR has developed the GNSS RO data processing and validation system. This study describes the COSMIC-2 neutral atmospheric temperature and moisture profile inversion algorithms at STAR. We used RS41 and ERA5, and UCAR 1D-Var products (wetPrf2) to validate the accuracy and uncertainty of the STAR 1D-Var thermal profiles. The STAR-RS41 temperature differences are less than a few tenths of 1 K from 8 km to 30 km altitude with a standard deviation (std) of 1.5–2 K. The mean STAR-RS41 water vapor specific humidity difference and the standard deviation are −0.35 g/kg and 1.2 g/kg, respectively. We also used the 1D-Var-derived temperature and water vapor profiles to compute the simulated brightness temperature (BTs) for advanced technology microwave sounder (ATMS) and cross-track infrared sounder (CrIS) channels and compared them to the collocated ATMS and CrIS measurements. The BT differences of STAR COSMIC-2-simulated BTs relative to SNPP ATMS are less than 0.1 K over all ATMS channels. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
6. Verification and Validation of the COSMIC-2 Excess Phase and Bending Angle Algorithms for Data Quality Assurance at STAR.
- Author
-
Zhang, Bin, Ho, Shu-peng, Cao, Changyong, Shao, Xi, Dong, Jun, and Chen, Yong
- Subjects
- *
GLOBAL Positioning System , *OCCULTATIONS (Astronomy) , *ATMOSPHERIC boundary layer , *DATA quality , *LONG-range weather forecasting , *NUMERICAL weather forecasting - Abstract
In recent years, Global Navigation Satellite System (GNSS) radio occultation (RO) has become a critical observation system for global operational numerical weather prediction. Constellation Observing System for Meteorology, Ionosphere, Climate (COSMIC) 2 (COSMIC-2) has been a backbone RO mission for NOAA. NOAA also began to purchase RO data from commercial sources in 2020. To ensure the consistent quality of RO data from different sources, NOAA Center for Satellite Applications and Research (STAR) has developed capabilities to process all available RO data from different missions. This paper describes the STAR RO processing systems which convert the pseudo-range and carrier phase observations to excess phases and bending angles (BAs). We compared our COSMIC-2 data products with those processed by the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis and Archive Center (CDAAC). We processed more than twelve thousand COSMIC-2 occultation profiles. Our results show that the excess phase difference between UCAR and STAR is within a few centimeters at high altitudes, although the difference increases towards the lower atmosphere. The BA profiles derived from the excess phase are consistent with UCAR. The mean relative BA differences at impact height from 10 to 30 km are less than 0.1% for GLObal NAvigation Satellite System (GLONASS) L2C signals and Global Positioning System (GPS) L2C and L2P signals. The standard deviations are 1.15%, 1.15%, and 1.32% for GLONASS L2C signal and for GPS L2C and L2P signals, respectively. The BA profiles agree with those derived from European Center for Medium-range Weather Forecast (ECMWF) reanalysis version 5 (ERA5). The Signal-to-Noise-Ratio (SNR) plays an essential role in the processing. The STAR BA profiles with higher L1 SNRs (L1 at 80 km) tend to yield more consistent results than those from UCAR, with a negligible difference and a smaller deviation than lower SNR profiles. Profiles with lower SNR values tend to show a more significant standard deviation towards the surface during the open-loop stage in the lower troposphere than those of higher SNR. We also found that the different COSMIC-2 clock solutions could contribute to the significant relative BA difference at high altitudes; however, it has little effect on the lower troposphere comparisons given larger BA values. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Simultaneous Radio Occultation for Intersatellite Comparison of Bending Angles toward More Accurate Atmospheric Sounding.
- Author
-
Cao, Changyong, Wang, Wenhui, Lynch, Erin, Bai, Yan, Ho, Shu-peng, and Zhang, Bin
- Subjects
GLOBAL Positioning System ,METRIC system ,DEPTH sounding ,REVERSE osmosis ,ATMOSPHERIC temperature ,REMOTE sensing ,ATMOSPHERIC acoustics - Abstract
Global Navigation Satellite System (GNSS) radio occultation (RO) is a remote sensing technique that uses International System of Units (SI) traceable GNSS signals for atmospheric limb soundings. The retrieved atmospheric temperature profile is believed to be more accurate and stable than those from other remote sensing techniques, although rigorous comparison between independent measurements is difficult because of time and space differences between individual RO events. Typical RO comparisons are based on global statistics with relaxed matchup criteria (within 3 h and 250 km) that are less than optimal given the dynamic nature and spatial nonuniformity of the atmosphere. This study presents a novel method that allows for direct comparison of bending angles when simultaneous RO measurements occur near the simultaneous nadir overpasses (SNO) of two low-Earth-orbit satellites receiving the same GNSS signal passing through approximately the same atmosphere, within minutes in time and less than 125 km in distance. Using this method, we found very good agreement between Formosa Satellite 7 (FORMOSAT-7)/second Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) satellite measurements and those from MetOp-A/B/C, COSMIC-1, Korea Multi-Purpose Satellite 5 (KOMPSAT-5), and Paz, although systematic biases are also found in some of the intercomparisons. Instrument and processing algorithm performances at different altitudes are also characterized. It is expected that this method can be used for the validation of GNSS RO measurements for most missions and would be a new addition to the tools for intersatellite calibration. This is especially important given the large number of RO measurements made available both publicly and commercially, and the expansion of receiver capabilities to all GNSS systems. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
8. Consistency and structural uncertainty of multi-mission GPS radio occultation records.
- Author
-
Steiner, Andrea K., Ladstädter, Florian, Ao, Chi O., Gleisner, Hans, Ho, Shu-Peng, Hunt, Doug, Schmidt, Torsten, Foelsche, Ulrich, Kirchengast, Gottfried, Kuo, Ying-Hwa, Lauritsen, Kent B., Mannucci, Anthony J., Nielsen, Johannes K., Schreiner, William, Schwärz, Marc, Sokolovskiy, Sergey, Syndergaard, Stig, and Wickert, Jens
- Subjects
GLOBAL Positioning System ,STRATOSPHERE ,DATA libraries ,UNCERTAINTY - Abstract
Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP, while data from the other missions – based on advanced receivers – are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
9. Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series.
- Author
-
Rieckh, Therese, Anthes, Richard, Randel, William, Ho, Shu-Peng, and Foelsche, Ulrich
- Subjects
TIME series analysis ,ATMOSPHERIC aerosols ,TROPOSPHERIC aerosols ,TROPOSPHERIC chemistry ,GLOBAL Positioning System - Abstract
While water vapor is the most important tropospheric greenhouse gas, it is also highly variable in both space and time, and water vapor concentrations range over 3 orders of magnitude in the troposphere. These properties challenge all observing systems to accurately measure and resolve the vertical structure and variability of tropospheric humidity. In this study we characterize the humidity measurements of various observing techniques, including four separate Global Positioning System (GPS) radio occultation (RO) humidity retrievals (University Corporation for Atmospheric Research (UCAR) direct, UCAR one-dimensional variational retrieval (1D-Var), Wegener Center for Climate and Global Change (WEGC) 1D-Var, Jet Propulsion Laboratory (JPL) direct), radiosonde, and Atmospheric Infrared Sounder (AIRS) data. Furthermore, we evaluate how well the ERA-Interim reanalysis and NCEP Global Forecast System (GFS) model perform in analyzing water vapor at different levels. To investigate detailed vertical structure, we analyzed time-height cross sections over four radiosonde stations in the tropical and subtropical western Pacific for the year 2007. We found that the accuracy of RO humidity is comparable to or better than both radiosonde and AIRS humidity over 800 to 400 hPa, as well as below 800 hPa if super-refraction is absent. The various RO retrievals of specific humidity agree within 20% in the 1000-400 hPa layer, and differences are most pronounced above 600 hPa. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
10. Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data.
- Author
-
Ho, Shu-peng, Peng, Liang, Anthes, Richard A., Kuo, Ying-Hwa, and Lin, Hsiao-Chun
- Subjects
- *
RADIOSONDE observations of the boundary layer , *GLOBAL Positioning System , *CLOUDINESS , *ATMOSPHERIC radio refractivity , *WATER vapor - Abstract
The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
11. Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics.
- Author
-
Chen, Yong, Shao, Xi, Cao, Changyong, and Ho, Shu-peng
- Subjects
REVERSE osmosis ,GLOBAL Positioning System ,METRIC system ,NUMERICAL weather forecasting ,ATMOSPHERIC acoustics ,SPACE environment - Abstract
The Global Navigation Satellite System (GNSS) radio occultation (RO) is a remote sensing technique that uses International System of Units (SI) traceable GNSS signals for atmospheric limb soundings. The RO bending angle/sounding profiles are needed for assimilation in Numerical Weather Prediction (NWP) models, weather, climate, and space weather applications. Evaluating these RO data to ensure the high data quality for these applications is becoming more and more critical. This study presents a method for predicting radio occultation events, from which simultaneous radio occultation (SRO) for a pair of low-Earth-orbit (LEO) satellites on the limb to the same GNSS satellite can be obtained. The SRO method complements the Simultaneous Nadir Overpass (SNO) method (for nadir viewing satellite instruments), which has been widely used to inter-calibrate LEO to LEO and LEO to geosynchronous-equatorial-orbit (GEO) satellites. Unlike the SNO method, the SRO method involves three satellites: a GNSS and two LEO satellites with RO receivers. The SRO method allows for the direct comparison of bending angles when the simultaneous RO measurements for two LEO satellites receiving the same GNSS signal pass through approximately the same atmosphere within minutes in time and within less than 200 km of distance from each other. The prediction method can also be applied to radiosonde overpass prediction, and coordinate radiosonde launches for inter-comparisons between RO and radiosonde profiles. The main advantage of the SRO comparisons of bending angles is the significantly reduced uncertainties due to the much shorter time and smaller atmospheric path differences than traditional RO comparisons. To demonstrate the usefulness of this method, we present a comparison of the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) and GeoOpitcs RO profiles using SRO data for two time periods: Commercial Weather Data (CWD) data delivery order-1 (DO-1): 15 December 2020–15 January 2021 and CWD DO-2: 17 March 2021–31 August 2021. The results show good agreement in the bending angles between the COSMIC-2 RO measurements and those from GeoOptics, although systematic biases are also found in the inter-comparisons. Instrument and processing algorithm performances for the signal-to-noise ratio (SNR), penetration height, and bending angle retrieval uncertainty are also characterized. Given the efficiency of this method and the many RO measurements that are publicly and commercially available as well as the expansion of receiver capabilities to all GNSS systems, it is expected that this method can be used to validate/inter-calibrate GNSS RO measurements from different missions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
12. Inverting COSMIC-2 Phase Data to Bending Angle and Refractivity Profiles Using the Full Spectrum Inversion Method.
- Author
-
Adhikari, Loknath, Ho, Shu-Peng, Zhou, Xinjia, and Dewitte, Steven
- Subjects
- *
OCCULTATIONS (Astronomy) , *GLOBAL Positioning System , *LONG-range weather forecasting , *DATA libraries - Abstract
The radio occultation technique provides stable atmospheric measurements that can work as a benchmark for calibrating and validating satellite-sounding data. Launched on 25 June 2019, the Constellation Observing System for Meteorology, Ionosphere, and Climate 2 and Formosa Satellite Mission 7 (COSMIC-2/FORMOSAT-7) are expected to produce about 5000 high-quality RO observations daily over the tropics and subtropics. COSMIC-2 constellation consists of 6 Low Earth Orbit (LEO) satellites in 24° inclination orbits at 720 km altitude and distributed mainly between 45°N to 45°S. The COSMIC-2 observations have uniform temporal coverage between 30°N to 30°S. This paper presents an independent inversion algorithm to invert COSMIC-2 geometry and phase data to bending angle and refractivity. We also investigate the quality of Global Navigation Satellite System (GNSS) and LEO position vectors derived from the UCAR COSMIC Data Analysis and Archive Center (CDAAC). The GNSS and LEO position vectors are stable with LEO position variations < 1.4 mm/s. The signal-to-noise ratio (SNR) on the L1 band ranges from 300–2600 v/v with a mean of 1600 v/v. The inversion algorithm developed at NOAA Center for Satellite Applications and Research (STAR) uses the Full Spectrum Inversion (FSI) method to invert COSMIC-2 geometry and phase data to bending angle and refractivity profiles. The STAR COSMIC-2 bending angle and refractivity profiles are compared with in situ radiosonde, the current COSMIC-2 products derived from CDAAC, and the collocated European Center for Medium-Range Weather Forecasts (ECMWF) climate reanalysis data ERA5. The mean bias at 8–40 km altitude among the UCAR, ERA5, and STAR is <0.1% for both bending and refractivity, with a standard deviation in the range of 1.4–2.3 and 0.9–1.1% for bending angles refractivity, respectively. In the lowest 2 km, the RO bias relative to ERA-5 shows a strong latitudinal and SNR dependence. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
13. A New Algorithm for the Retrieval of Atmospheric Profiles from GNSS Radio Occultation Data in Moist Air and Comparison to 1DVar Retrievals.
- Author
-
Li, Ying, Kirchengast, Gottfried, Scherllin-Pirscher, Barbara, Schwaerz, Marc, Nielsen, Johannes K., Ho, Shu-peng, and Yuan, Yun-bin
- Subjects
GLOBAL Positioning System ,STATISTICAL ensembles ,SATELLITE meteorology ,STRATOSPHERE - Abstract
The Global Navigation Satellite System (GNSS) Radio Occultation (RO) is a key technique for obtaining thermodynamic profiles of temperature, humidity, pressure, and density in the Earth's troposphere. However, due to refraction effects of both the dry air and water vapor at low altitudes, retrieval of accurate profiles is challenging. Here we introduce a new moist air retrieval algorithm aiming to improve the quality of RO-retrieved profiles in moist air and including uncertainty estimation in a clear sequence of steps. The algorithm first uses RO dry temperature and pressure and background temperature/humidity and their uncertainties to retrieve humidity/temperature and their uncertainties. These temperature and humidity profiles are then combined with their corresponding background profiles by optimal estimation employing inverse-variance weighting. Finally, based on the optimally estimated temperature and humidity profiles, pressure and density profiles are computed using hydrostatic and equation-of-state formulas. The input observation and background uncertainties are dynamically estimated, accounting for spatial and temporal variations. We show results from applying the algorithm on test datasets, deriving insights from both individual profiles and statistical ensembles, and from comparison to independent 1D-Variational (1DVar) algorithm-derived moist air retrieval results from Radio Occultation Meteorology Satellite Application Facility Copenhagen (ROM-SAF) and University Corporation for Atmospheric Research (UCAR) Boulder RO processing centers. We find that the new scheme is comparable in its retrieval performance and features advantages in the integrated uncertainty estimation that includes both estimated random and systematic uncertainties and background bias correction. The new algorithm can therefore be used to obtain high-quality tropospheric climate data records including uncertainty estimation. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.