1. Stable and pH-sensitive protein nanogels made by self-assembly of heat denatured soy protein.
- Author
-
Chen N, Lin L, Sun W, and Zhao M
- Subjects
- Hot Temperature, Hydrogen-Ion Concentration, Hydrophobic and Hydrophilic Interactions, Nanogels, Protein Conformation, Protein Stability, Globulins chemistry, Polyethylene Glycols chemistry, Polyethyleneimine chemistry, Soybean Proteins chemistry, Glycine max chemistry
- Abstract
In this study, we examined the possibility of preparing stable soy protein nanogels by simply heating homogeneous soy protein dispersion. The protein nanogels formed were characterized by z-average hydrodynamic diameter, polydispersity index, turbidity, ζ-potential, morphology, and their stability to pH and ionic strength change. Soy protein dispersion (1% w/v) was homogeneous around pH 5.9 where it had the lowest polydispersity index (∼0.1). Stable and spherical nanogels were formed by heating soy protein dispersion at pH 5.9 under 95 °C. They sustained constantly low polydispersity index (∼0.1) in the investigated pH range of 6.06-7.0 and 2.6-3.0. The nanogels were pH-sensitive and would swell with pH change. They were stable at 0-200 mM NaCl concentration. Denaturation of soy glycinin was the prerequisite for the formation of stable nanogels. Soy protein nanogels had a core-shell structure with basic polypeptides and β subunits interacting together as the hydrophobic core; and acid polypeptides, α', and α subunits locating outside the core as hydrophilic shell. The inner structure of soy protein nanogels was mainly stabilized by disulfide bonds cross-linked network and hydrophobic interaction. Soy protein nanogels made in this study would be useful as functional ingredients in biotechnological, pharmaceutical, and food industries.
- Published
- 2014
- Full Text
- View/download PDF