1. Colored spanning graphs for set visualization
- Author
-
Hurtado, Ferran, Korman, Matias, van Kreveld, M.J., Löffler, Maarten, Sacristán, Vera, Shioura, Akiyoshi, Silveira, Rodrigo I., Speckmann, Bettina, Tokuyama, Takeshi, Sub Multimedia & Geometry begr. 1/1/13, Computational Geometry, Sub Geometric Computing, Sub Multimedia & Geometry begr. 1/1/13, Computational Geometry, Sub Geometric Computing, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCG - Discrete and Combinatorial Geometry, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta, Algorithms, Applied Geometric Algorithms, and Algorithms, Geometry and Applications
- Subjects
FOS: Computer and information sciences ,Set visualization ,02 engineering and technology ,Minimum spanning tree ,01 natural sciences ,Matroid ,Plane (Unicode) ,Colored point set ,Taverne ,0202 electrical engineering, electronic engineering, information engineering ,65 Numerical analysis::65D Numerical approximation and computational geometry [Classificació AMS] ,Astrophysics::Solar and Stellar Astrophysics ,Matemàtiques i estadística::Geometria::Geometria computacional [Àrees temàtiques de la UPC] ,Mathematics ,Algebra, Homological ,Matroid intersection ,Computer Science Applications ,Computational Mathematics ,Colored ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Line (geometry) ,symbols ,Minification ,Numerical analysis ,Computational Geometry (cs.CG) ,Control and Optimization ,Àlgebra homològica ,0102 computer and information sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Connected dominating set ,Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC] ,Set (abstract data type) ,Combinatorics ,symbols.namesake ,Euclidean minimum spanning tree ,Approximation ,Linear separability ,Astrophysics::Galaxy Astrophysics ,Minimum degree spanning tree ,Discrete mathematics ,Anàlisi numèrica ,Spanning tree ,55 Algebraic topology::55U Applied homological algebra and category theory [Classificació AMS] ,Grafs, Teoria de ,020207 software engineering ,Graph theory ,Euler diagram ,Computer Science - Computational Geometry ,Geometry and Topology ,05 Combinatorics::05C Graph theory [Classificació AMS] ,MathematicsofComputing_DISCRETEMATHEMATICS ,Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs [Àrees temàtiques de la UPC] - Abstract
We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong exclusively to the red set, and purple points belong to both sets. A red-blue-purple spanning graph (RBP spanning graph) is a set of edges connecting the points such that the subgraph induced by the red and purple points is connected, and the subgraph induced by the blue and purple points is connected. We study the geometric properties of minimum RBP spanning graphs and the algorithmic problems associated with computing them. Specifically, we show that the general problem can be solved in polynomial time using matroid techniques. In addition, we discuss more efficient algorithms for the case in which points are located on a line or a circle, and also describe a fast ( 1 2 ρ + 1 ) -approximation algorithm, where ρ is the Steiner ratio.
- Published
- 2013
- Full Text
- View/download PDF