1. Potential of Solar-Induced Chlorophyll Fluorescence for Monitoring Gross Primary Productivity and Evapotranspiration in Tidally-Influenced Coastal Salt Marshes.
- Author
-
Lai, Jianlin and Huang, Ying
- Subjects
- *
CHLOROPHYLL spectra , *SALT marshes , *HYDROLOGIC cycle , *ATMOSPHERIC temperature , *CARBON cycle , *COASTAL wetlands - Abstract
Solar-induced chlorophyll fluorescence (SIF) offers significant potential as a novel approach for quantifying carbon and water cycling in coastal wetland ecosystems across multiple spatial scales. However, the mechanisms governing these biogeochemical processes remain insufficiently understood, largely due to the periodic influence of tidal inundation. In this study, we investigated the effects and underlying mechanisms of meteorological and tidal factors on the relationships between canopy-level solar-induced chlorophyll fluorescence at 760 nm (SIF760) and key ecosystem processes, including gross primary productivity (GPP) and evapotranspiration (ET), in coastal wetlands. These processes are critical components of the ecosystem carbon and water cycles. Our approach involved a comparative analysis of simulations from the Soil Canopy Observation, Photochemistry and Energy Fluxes (SCOPE) model with field measurements. The results showed that: (1) simulations of SIF760 improved following observation-based calibration of the fluorescence photosynthesis module in the SCOPE model; (2) under optimal moisture and temperature conditions (VPD 1.2–1.4 kPa and temperatures of 20–23 °C for air, soil, and water), the simulations of GPP, ET, and SIF760 were most accurate, although salinity stress reduced performance. GPP simulations tended to overestimate under drought stress but improved at higher air temperatures (30–32 °C); (3) during tidal inundation, the SIF760-GPP relationship weakened while the SIF760-ET strengthened. The range of significant correlations between SIF760, water levels, and temperature narrowed, with both relationships becoming more complex due to salinity stress. These findings suggest that tidal inundation can alleviate temperature stress on photosynthesis and transpiration; however, it also decreases photosynthetic efficiency and alters radiative transfer processes due to elevated salinity and water levels. These factors are critical considerations when using SIF to monitor GPP and ET dynamics in coastal wetlands. This study demonstrated that the tidal dynamics significantly affected the SIF760-GPP and SIF760-ET relationships, underscoring the necessity of incorporating tidal influences in the application of SIF remote sensing for monitoring GPP and ET dynamics. The results of this study not only contribute to a deeper understanding of the mechanisms linking SIF760 with GPP and ET but also provide new insights into the development and refinement of SIF-based remote sensing for carbon quantification in coastal blue-carbon ecosystems on a large-scale domain. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF