1. Hardware Architectures for Real-Time Medical Imaging
- Author
-
Eduardo Alcaín, Pedro R. Fernández, Rubén Nieto, Antonio S. Montemayor, Jaime Vilas, Adrian Galiana-Bordera, Pedro Miguel Martinez-Girones, Carmen Prieto-de-la-Lastra, Borja Rodriguez-Vila, Marina Bonet, Cristina Rodriguez-Sanchez, Imene Yahyaoui, Norberto Malpica, Susana Borromeo, Felipe Machado, and Angel Torrado-Carvajal
- Subjects
TK7800-8360 ,Computer Networks and Communications ,Hardware and Architecture ,Control and Systems Engineering ,biomedical imaging systems ,hardware acceleration ,Signal Processing ,medical imaging ,parallel architectures ,Electrical and Electronic Engineering ,Electronics ,medical image analysis - Abstract
Medical imaging is considered one of the most important advances in the history of medicine and has become an essential part of the diagnosis and treatment of patients. Earlier prediction and treatment have been driving the acquisition of higher image resolutions as well as the fusion of different modalities, raising the need for sophisticated hardware and software systems for medical image registration, storage, analysis, and processing. In this scenario and given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often required to provide both highly accurate and real-time processing of large amounts of imaging data. Additionally, lowering the prices of each part of imaging equipment, as well as its development and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more accessible healthcare. This paper focuses on the evolution and the application of different hardware architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various specific examples and discussing different options depending on the specific application. The main purpose is to provide a general introduction to hardware acceleration techniques for medical imaging researchers and developers who need to accelerate their implementations.
- Published
- 2021