1. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1.
- Author
-
Yang X, Zhang M, Xie B, Peng Z, Manning JR, Zimmerman R, Wang Q, Wei AC, Khalifa M, Reynolds M, Jin J, Om M, Zhu G, Bedja D, Jiang H, Jurczak M, Shiva S, Scott I, O'Rourke B, Kass DA, Paolocci N, and Feng N
- Subjects
- Animals, Humans, Mice, Brain-Derived Neurotrophic Factor genetics, Brain-Derived Neurotrophic Factor metabolism, Energy Metabolism, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha genetics, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha metabolism, YY1 Transcription Factor metabolism, Heart Failure, Transcription Factors genetics, Transcription Factors metabolism
- Abstract
Aims: Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress., Methods and Results: We found that myocardial BDNF expression was increased in mice with swimming exercise but decreased in a mouse heart failure model and human failing hearts. Cardiac-specific TrkB knockout (cTrkB KO) mice displayed a blunted adaptive cardiac response to exercise, with attenuated upregulation of transcription factor networks controlling mitochondrial biogenesis/metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). In response to pathological stress (transaortic constriction, TAC), cTrkB KO mice showed an exacerbated heart failure progression. The downregulation of PGC-1α in cTrkB KO mice exposed to exercise or TAC resulted in decreased cardiac energetics. We further unravelled that BDNF induces PGC-1α upregulation and bioenergetics through a novel signalling pathway, the pleiotropic transcription factor Yin Yang 1., Conclusion: Taken together, our findings suggest that myocardial BDNF plays a critical role in regulating cellular energetics in the cardiac stress response., Competing Interests: Conflict of interest: None declared., (© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF