1. Remote Short Sessions of Heart Rate Variability Biofeedback Monitored With Wearable Technology: Open-Label Prospective Feasibility Study.
- Author
-
Hirten RP, Danieletto M, Landell K, Zweig M, Golden E, Pyzik R, Kaur S, Chang H, Helmus D, Sands BE, Charney D, Nadkarni G, Bagiella E, Keefer L, and Fayad ZA
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Health Personnel, New York City, Prospective Studies, Telemedicine methods, Telemedicine instrumentation, Biofeedback, Psychology methods, Biofeedback, Psychology instrumentation, Heart Rate physiology, Wearable Electronic Devices
- Abstract
Background: Heart rate variability (HRV) biofeedback is often performed with structured education, laboratory-based assessments, and practice sessions. It has been shown to improve psychological and physiological function across populations. However, a means to remotely use and monitor this approach would allow for wider use of this technique. Advancements in wearable and digital technology present an opportunity for the widespread application of this approach., Objective: The primary aim of the study was to determine the feasibility of fully remote, self-administered short sessions of HRV-directed biofeedback in a diverse population of health care workers (HCWs). The secondary aim was to determine whether a fully remote, HRV-directed biofeedback intervention significantly alters longitudinal HRV over the intervention period, as monitored by wearable devices. The tertiary aim was to estimate the impact of this intervention on metrics of psychological well-being., Methods: To determine whether remotely implemented short sessions of HRV biofeedback can improve autonomic metrics and psychological well-being, we enrolled HCWs across 7 hospitals in New York City in the United States. They downloaded our study app, watched brief educational videos about HRV biofeedback, and used a well-studied HRV biofeedback program remotely through their smartphone. HRV biofeedback sessions were used for 5 minutes per day for 5 weeks. HCWs were then followed for 12 weeks after the intervention period. Psychological measures were obtained over the study period, and they wore an Apple Watch for at least 7 weeks to monitor the circadian features of HRV., Results: In total, 127 HCWs were enrolled in the study. Overall, only 21 (16.5%) were at least 50% compliant with the HRV biofeedback intervention, representing a small portion of the total sample. This demonstrates that this study design does not feasibly result in adequate rates of compliance with the intervention. Numerical improvement in psychological metrics was observed over the 17-week study period, although it did not reach statistical significance (all P>.05). Using a mixed effect cosinor model, the mean midline-estimating statistic of rhythm (MESOR) of the circadian pattern of the SD of the interbeat interval of normal sinus beats (SDNN), an HRV metric, was observed to increase over the first 4 weeks of the biofeedback intervention in HCWs who were at least 50% compliant., Conclusions: In conclusion, we found that using brief remote HRV biofeedback sessions and monitoring its physiological effect using wearable devices, in the manner that the study was conducted, was not feasible. This is considering the low compliance rates with the study intervention. We found that remote short sessions of HRV biofeedback demonstrate potential promise in improving autonomic nervous function and warrant further study. Wearable devices can monitor the physiological effects of psychological interventions., (©Robert P Hirten, Matteo Danieletto, Kyle Landell, Micol Zweig, Eddye Golden, Renata Pyzik, Sparshdeep Kaur, Helena Chang, Drew Helmus, Bruce E Sands, Dennis Charney, Girish Nadkarni, Emilia Bagiella, Laurie Keefer, Zahi A Fayad. Originally published in JMIR Mental Health (https://mental.jmir.org), 25.04.2024.)
- Published
- 2024
- Full Text
- View/download PDF