1. Combined imputation of HLA genotype and self-identified race leads to better donor-recipient matching.
- Author
-
Israeli S, Gragert L, Madbouly A, Bashyal P, Schneider J, Maiers M, and Louzoun Y
- Subjects
- Humans, Genotype, Haplotypes, Tissue Donors, Histocompatibility Antigens Class II genetics, Histocompatibility Testing methods, Registries, HLA Antigens genetics, Hematopoietic Stem Cell Transplantation methods
- Abstract
Allogeneic Hematopoietic Cell Transplantation (HCT) is a curative therapy for hematologic disorders and often requires human leukocyte antigen (HLA)-matched donors. Donor registries have recruited donors utilizing evolving technologies of HLA genotyping methods. This necessitates in-silico ambiguity resolution and statistical imputation based on haplotype frequencies estimated from donor data stratified by self-identified race and ethnicity (SIRE). However, SIRE has limited genetic validity and presents a challenge for individuals with unknown or mixed SIRE. We present MR-GRIMM "Multi-Race Graph IMputation and Matching" that simultaneously imputes the race/ethnic category and HLA genotype using a SIRE based prior. Additionally, we propose a novel method to impute HLA typing inconsistent with current haplotype frequencies. The performance of MR-GRIMM was validated using a dataset of 170,000 donor-recipient pairs. MR-GRIMM has an average 20 % lower matching error (1-AUC) than single-race imputation. The recall metric (sensitivity) of the race/ethnic category imputation from HLA was measured by comparing the imputed donor race with the donor-provided SIRE. Accuracies of 0.74 and 0.55 were obtained for the prediction of 5 broad and 21 detailed US population groups respectively. The operational implementation of this algorithm in a registry search could help improve match predictions and access to HLA-matched donors., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF