1. Effect of hemorrhage rate on early hemodynamic responses in conscious sheep.
- Author
-
Scully CG, Daluwatte C, Marques NR, Khan M, Salter M, Wolf J, Nelson C, Salsbury J, Enkhbaatar P, Kinsky M, Kramer GC, and Strauss DG
- Subjects
- Adaptation, Physiological, Animals, Arterial Pressure, Cardiac Output, Consciousness, Disease Models, Animal, Female, Heart Rate, Hemorrhage blood, Hypotension blood, Hypovolemia blood, Oxygen blood, Sheep, Time Factors, Venous Pressure, Blood Volume, Hemodynamics, Hemorrhage physiopathology, Hypotension physiopathology, Hypovolemia physiopathology
- Abstract
Physiological compensatory mechanisms can mask the extent of hemorrhage in conscious mammals, which can be further complicated by individual tolerance and variations in hemorrhage onset and duration. We assessed the effect of hemorrhage rate on tolerance and early physiologic responses to hemorrhage in conscious sheep. Eight Merino ewes (37.4 ± 1.1 kg) were subjected to fast (1.25 mL/kg/min) and slow (0.25 mL/kg/min) hemorrhages separated by at least 3 days. Blood was withdrawn until a drop in mean arterial pressure (MAP) of >30 mmHg and returned at the end of the experiment. Continuous monitoring includedMAP, central venous pressure, pulmonary artery pressure, pulse oximetry, and tissue oximetry. Cardiac output by thermodilution and arterial blood samples were also measured. The effects of fast versus slow hemorrhage rates were compared for total volume of blood removed and stoppage time (whenMAP < 30 mmHg of baseline) and physiological responses during and after the hemorrhage. Estimated blood volume removed whenMAPdropped 30 mmHg was 27.0 ± 4.2% (mean ± standard error) in the slow and 27.3 ± 3.2% in the fast hemorrhage (P = 0.47, pairedttest between rates). Pressure and tissue oximetry responses were similar between hemorrhage rates. Heart rate increased at earlier levels of blood loss during the fast hemorrhage, but hemorrhage rate was not a significant factor for individual hemorrhage tolerance or hemodynamic responses. In 5/16 hemorrhages MAP stopping criteria was reached with <25% of blood volume removed. This study presents the physiological responses leading up to a significant drop in blood pressure in a large conscious animal model and how they are altered by the rate of hemorrhage., (© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.)
- Published
- 2016
- Full Text
- View/download PDF