1. Acoustic-holography-patterned primary hepatocytes possess liver functions.
- Author
-
Li C, Xu G, Wang Y, Huang L, Cai F, Meng L, Jin B, Jiang Z, Sun H, Zhao H, Lu X, Sang X, Huang P, Li F, Yang H, Mao Y, and Zheng H
- Subjects
- Animals, Mice, Acoustics, Cells, Cultured, Spheroids, Cellular cytology, Mice, Inbred C57BL, Hepatocytes cytology, Hepatocytes metabolism, Liver cytology, Holography methods
- Abstract
Acoustic holography (AH), a promising approach for cell patterning, emerges as a powerful tool for constructing novel invitro 3D models that mimic organs and cancers features. However, understanding changes in cell function post-AH remains limited. Furthermore, replicating complex physiological and pathological processes solely with cell lines proves challenging. Here, we employed acoustical holographic lattice to assemble primary hepatocytes directly isolated from mice into a cell cluster matrix to construct a liver-shaped tissue sample. For the first time, we evaluated the liver functions of AH-patterned primary hepatocytes. The patterned model exhibited large numbers of self-assembled spheroids and superior multifarious core hepatocyte functions compared to cells in 2D and traditional 3D culture models. AH offers a robust protocol for long-term in vitro culture of primary cells, underscoring its potential for future applications in disease pathogenesis research, drug testing, and organ replacement therapy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF