1. Pion contamination in the MICE muon beam
- Author
-
Adams, D., Alekou, A., Apollonio, M., Asfandiyarov, R., Barber, G., Barclay, P., de Bari, A., Bayes, R., Bayliss, V., Bertoni, R., Blackmore, V.J., Blondel, A., Blot, S., Bogomilov, M., Bonesini, M., Booth, C.N., Bowring, D., Boyd, S., Brashaw, T.W., Bravar, U., Bross, A.D., Capponi, M., Carlisle, T., Cecchet, G., Charnley, C., Chignoli, F., Cline, D., Cobb, J.H., Colling, G., Collomb, N., Coney, L., Cooke, P., Courthold, M., Cremaldi, L.M., DeMello, A., Dick, A., Dobbs, A., Dornan, P., Drews, M., Drielsma, F., Filthaut, F., Fitzpatrick, T., Franchini, P., Francis, V., Fry, L., Gallagher, A., Gamet, R., Gardener, R., Gourlay, S., Grant, A., Greis, J.R., Griffiths, S., Hanlet, P., Hansen, O.M., Hanson, G.G., Hart, T.L., Hartnett, T., Hayler, T., Heidt, C., Hills, M., Hodgson, P., Hunt, C., Iaciofano, A., Ishimoto, S., Kafka, G., Kaplan, D.M., Karadzhov, Y., Kim, Y.K., Kuno, Y., Kyberd, P., Lagrange, J-B., Langlands, J., Lau, W., Leonova, M., Li, D., Lintern, A., Littlefield, M., Long, K., Luo, T., Macwaters, C., Martlew, B., Martyniak, J., Mazza, R., Middleton, S., Moretti, A., Moss, A., Muir, A., Mullacrane, I., Nebrensky, J.J., Neuffer, D., Nichols, A., Nicholson, R., Nugent, J.C., Oates, A., Onel, Y., Orestano, D., Overton, E., Owens, P., Palladino, V., Pasternak, J., Pastore, F., Pidcott, C., Popovic, M., Preece, R., Prestemon, S., Rajaram, D., Ramberger, S., Rayner, M.A., Ricciardi, S., Roberts, T.J., Robinson, M., Rogers, C., Ronald, K., Rubinov, P., Rucinski, P., Sakamato, H., Sanders, D.A., Santos, E., Savidge, T., Smith, P.J., Snopok, P., Soler, F.J.P., Speirs, D., Stanley, T., Stokes, G., Summers, D.J., Tarrant, J., Taylor, I., Tortora, L., Torun, Y., Tsenov, R., Tunnell, C.D., Uchida, M.A., Vankova-Kirilova, G., Virostek, S., Vretenar, M., Warburton, P., Watson, S., White, C., Whyte, C.G., Wilson, A., Winter, M., Yang, X., Young, A., Zisman, M., Collaboration, MICE, Science and Technology Facilities Council (STFC), Adams, D., Alekou, A., Apollonio, M., Asfandiyarov, R., Barber, G., Barclay, P., De Bari, A., Bayes, R., Bayliss, V., Bertoni, R., Blackmore, V. J., Blondel, A., Blot, S., Bogomilov, M., Bonesini, M., Booth, C. N., Bowring, D., Boyd, S., Brashaw, T. W., Bravar, U., Bross, A. D., Capponi, M., Carlisle, T., Cecchet, G., Charnley, C., Chignoli, F., Cline, D., Cobb, J. H., Colling, G., Collomb, N., Coney, L., Cooke, P., Courthold, M., Cremaldi, L. M., Demello, A., Dick, A., Dobbs, A., Dornan, P., Drews, M., Drielsma, F., Filthaut, F., Fitzpatrick, T., Franchini, P., Francis, V., Fry, L., Gallagher, A., Gamet, R., Gardener, R., Gourlay, S., Grant, A., Greis, J. R., Griffiths, S., Hanlet, P., Hansen, O. M., Hanson, G. G., Hart, T. L., Hartnett, T., Hayler, T., Heidt, C., Hills, M., Hodgson, P., Hunt, C., Iaciofano, A., Ishimoto, S., Kafka, G., Kaplan, D. M., Karadzhov, Y., Kim, Y. K., Kuno, Y., Kyberd, P., Lagrange, J. -B., Langlands, J., Lau, W., Leonova, M., Li, D., Lintern, A., Littlefield, M., Long, K., Luo, T., Macwaters, C., Martlew, B., Martyniak, J., Mazza, R., Middleton, S., Moretti, A., Moss, A., Muir, A., Mullacrane, I., Nebrensky, J. J., Neuffer, D., Nichols, A., Nicholson, R., Nugent, J. C., Oates, A., Onel, Y., Orestano, D., Overton, E., Owens, P., Palladino, V., Pasternak, J., Pastore, F., Pidcott, C., Popovic, M., Preece, R., Prestemon, S., Rajaram, D., Ramberger, S., Rayner, M. A., Ricciardi, S., Roberts, T. J., Robinson, M., Rogers, C., Ronald, K., Rubinov, P., Rucinski, P., Sakamato, H., Sanders, D. A., Santos, E., Savidge, T., Smith, P. J., Snopok, P., Soler, F. J. P., Speirs, D., Stanley, T., Stokes, G., Summers, D. J., Tarrant, J., Taylor, I., Tortora, L., Torun, Y., Tsenov, R., Tunnell, C. D., Uchida, M. A., Vankova-Kirilova, G., Virostek, S., Vretenar, M., Warburton, P., Watson, S., White, C., Whyte, C. G., Wilson, A., Winter, M., Yang, X., Young, A., and Zisman, M.
- Subjects
Technology ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Beam-line instrumentation (beam position and profile monitors ,FOS: Physical sciences ,Instrumentation for particle accelerators and storage rings-low energy (linear accelerators, cyclotrons, electrostatic accelerators) ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Pion ,DESIGN ,0103 physical sciences ,Ionization cooling ,High Energy Physics ,Instrumentation for particle accelerators and storage rings - low energy (linear accelerators,cyclotrons, electrostatic accelerators) ,Physics::Atomic Physics ,Detectors and Experimental Techniques ,010306 general physics ,Instruments & Instrumentation ,Instrumentation ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,beam-intensity monitor ,Mathematical Physics ,Physics ,Beam-line instrumentation (beam position and profile ,monitors ,beam-intensity monitors ,bunch length monitors) ,Science & Technology ,Muon ,CONSTRUCTION ,010308 nuclear & particles physics ,Bunch length monitors ,Instrumentation and Detectors (physics.ins-det) ,Contamination ,Beam-intensity monitors ,Nuclear & Particles Physics ,Experimental High Energy Physics ,Beam-line instrumentation (beam position and profile monitor ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators) ,International Muon Ionization Cooling Experiment ,Beam (structure) - Abstract
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\sim$1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_��< 1.4\%$ at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling., 16 pages, 7 figures
- Published
- 2015