1. BOSS Constraints on Massive Particles during Inflation: The Cosmological Collider in Action
- Author
-
Cabass, Giovanni, Philcox, Oliver H. E., Ivanov, Mikhail M., Akitsu, Kazuyuki, Chen, Shi-Fan, Simonović, Marko, and Zaldarriaga, Matias
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
Massive particles leave imprints on primordial non-Gaussianity via couplings to the inflaton, even despite their exponential dilution during inflation: practically, the Universe acts as a Cosmological Collider. We present the first dedicated search for spin-zero particles using BOSS redshift-space galaxy power spectrum and bispectrum multipoles, as well as Planck CMB non-Gaussianity data. We demonstrate that some Cosmological Collider models are well approximated by the standard equilateral and orthogonal parametrization; assuming negligible inflaton self-interactions, this facilitates us translating Planck non-Gaussianity constraints into bounds on Collider models. Many models have signatures that are not degenerate with equilateral and orthogonal non-Gaussianity and thus require dedicated searches. Here, we constrain such models using BOSS three-dimensional redshift-space galaxy clustering data, focusing on spin-zero particles in the principal series and constraining their couplings to the inflaton at varying speed and mass, marginalizing over the unknown inflaton self-interactions. This is made possible through an improvement in Cosmological Bootstrap techniques and the combination of perturbation theory and halo occupation distribution models for galaxy clustering. Our work sets the standard for inflationary spectroscopy with cosmological observations, providing the ultimate link between physics on the largest and smallest scales., Comment: 35 pages, 15 figures, 6 tables
- Published
- 2024