1. Development of a High-Throughput Platform for Quantitation of Histone Modifications on a New QTOF Instrument.
- Author
-
Zahn E, Xie Y, Liu X, Karki R, Searfoss RM, de Luna Vitorino FN, Lempiäinen JK, Gongora J, Lin Z, Zhao C, Yuan ZF, and Garcia BA
- Subjects
- Humans, Chromatography, Liquid methods, Mass Spectrometry methods, High-Throughput Screening Assays methods, Histone Deacetylase Inhibitors pharmacology, Proteomics methods, Peptides metabolism, Histones metabolism, Protein Processing, Post-Translational
- Abstract
Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The five histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry (MS)-based approaches, identification and quantification of modified histone peptides remains challenging because of factors, such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks. Here, we describe the development of a new high-throughput method to identify and quantify over 150 modified histone peptides by LC-MS. Fast gradient microflow liquid chromatography and variable window sequential windows acquisition of all theoretical spectra data-independent acquisition on a new quadrupole time-of-flight platform is compared to a previous method using nanoflow LC-MS on an Orbitrap hybrid. Histones extracted from cells treated with either a histone deacetylase inhibitor or transforming growth factor-beta 1 were analyzed by data-independent acquisition on two mass spectrometers: an Orbitrap Exploris 240 with a 55-min nanoflow LC gradient and the SCIEX ZenoTOF 7600 with a 10-min microflow gradient. To demonstrate the reproducibility and speed advantage of the method, 100 consecutive injections of one sample were performed in less than 2 days on the quadrupole time-of-flight platform. The result is the comprehensive characterization of histone PTMs achieved in less than 20 min of total run time using only 200 ng of sample. Results for drug-treated histone samples are comparable to those produced by the previous method and can be achieved using less than one-third of the instrument time., Competing Interests: Conflict of interest The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF