1. Breathing under Anesthesia: A Key Role for the Retrotrapezoid Nucleus Revealed by Conditional Phox2b Mutant Mice.
- Author
-
Bourgeois T, Ringot M, Ramanantsoa N, Matrot B, Dauger S, Delclaux C, and Gallego J
- Subjects
- Animals, Female, Ketamine administration & dosage, Male, Mice, Mice, Transgenic, Superior Olivary Complex physiology, Anesthesia adverse effects, Anesthetics, Dissociative administration & dosage, Homeodomain Proteins genetics, Mutation genetics, Respiration drug effects, Superior Olivary Complex drug effects, Transcription Factors genetics
- Abstract
Background: Optimal management of anesthesia-induced respiratory depression requires identification of the neural pathways that are most effective in maintaining breathing during anesthesia. Lesion studies point to the brainstem retrotrapezoid nucleus. We therefore examined the respiratory effects of common anesthetic/analgesic agents in mice with selective genetic loss of retrotrapezoid nucleus neurons (Phox2b mice, hereafter designated "mutants")., Methods: All mice received intraperitoneal ketamine doses ranging from 100 mg/kg at postnatal day (P) 8 to 250 mg/kg at P60 to P62. Anesthesia effects in P8 and P14 to P16 mice were then analyzed by administering propofol (100 and 150 mg/kg at P8 and P14 to P16, respectively) and fentanyl at an anesthetic dose (1 mg/kg at P8 and P14 to P16)., Results: Most mutant mice died of respiratory arrest within 13 min of ketamine injection at P8 (12 of 13, 92% vs. 0 of 8, 0% wild type; Fisher exact test, P < 0.001) and P14 to P16 (32 of 42, 76% vs. 0 of 59, 0% wild type; P < 0.001). Cardiac activity continued after terminal apnea, and mortality was prevented by mechanical ventilation, supporting respiratory arrest as the cause of death in the mutants. Ketamine-induced mortality in mutants compared to wild types was confirmed at P29 to P31 (24 of 36, 67% vs. 9 of 45, 20%; P < 0.001) and P60 to P62 (8 of 19, 42% vs. 0 of 12, 0%; P = 0.011). Anesthesia-induced mortality in mutants compared to wild types was also observed with propofol at P8 (7 of 7, 100% vs. 0 of 17,7/7, 100% vs. 0/17, 0%; P < 0.001) and P14 to P16 (8 of 10, 80% vs. 0 of 10, 0%; P < 0.001) and with fentanyl at P8 (15 of 16, 94% vs. 0 of 13, 0%; P < 0.001) and P14 to P16 (5 of 7, 71% vs. 0 of 11, 0%; P = 0.002)., Conclusions: Ketamine, propofol, and fentanyl caused death by respiratory arrest in most mice with selective loss of retrotrapezoid nucleus neurons, in doses that were safe in their wild type littermates. The retrotrapezoid nucleus is critical to sustain breathing during deep anesthesia and may prove to be a pharmacologic target for this purpose.
- Published
- 2019
- Full Text
- View/download PDF