1. Host conditioning and rejection monitoring in hepatocyte transplantation in humans
- Author
-
Kyle Soltys, Kimberly Haberman, Chethan Ashokkumar, Jason V. Fong, Rachel Sada, George V. Mazariegos, Alexandra Dreyzin, Veysel Tahan, Sarangarajan Ranganathan, Donna B. Stolz, Ken Fukumitsu, Rakesh Sindhi, Chandan Guha, Kevin M. Baskin, Steven F. Dobrowolski, Rajavel Elango, Benjamin L. Shneider, Miguel Reyes-Múgica, Mubina Quader, John J. Crowley, Edgar N. Tafaleng, Kenneth Dorko, Roberto Gramignoli, Stephen C. Strom, Alejandro Soto Gutiérrez, Masaki Nagaya, Robert H. Squires, Jeffrey L. Platt, Ira J. Fox, Gerard Vockley, Taichiro Nishikawa, Marilia Cascalho, Jayanta Roy-Chowdhury, Melvin Deutsch, and Kentaro Setoyama
- Subjects
Adult ,Graft Rejection ,Male ,0301 basic medicine ,Pathology ,medicine.medical_specialty ,Transplantation Conditioning ,Urea cycle disorder ,Swine ,medicine.medical_treatment ,T cell ,Transplantation, Heterologous ,Human leukocyte antigen ,Biology ,Article ,03 medical and health sciences ,0302 clinical medicine ,medicine ,Animals ,Humans ,CD154 ,Hepatology ,Liver Diseases ,Immunosuppression ,medicine.disease ,Radiation therapy ,Macaca fascicularis ,surgical procedures, operative ,030104 developmental biology ,medicine.anatomical_structure ,Liver ,Hepatocyte ,Urea cycle ,Immunology ,Hepatocytes ,Female ,030211 gastroenterology & hepatology - Abstract
Background & Aims Hepatocyte transplantation partially corrects genetic disorders and has been associated anecdotally with reversal of acute liver failure. Monitoring for graft function and rejection has been difficult, and has contributed to limited graft survival. Here we aimed to use preparative liver-directed radiation therapy, and continuous monitoring for possible rejection in an attempt to overcome these limitations. Methods Preparative hepatic irradiation was examined in non-human primates as a strategy to improve engraftment of donor hepatocytes, and was then applied in human subjects. T cell immune monitoring was also examined in human subjects to assess adequacy of immunosuppression. Results Porcine hepatocyte transplants engrafted and expanded to comprise up to 15% of irradiated segments in immunosuppressed monkeys preconditioned with 10Gy liver-directed irradiation. Two patients with urea cycle deficiencies had early graft loss following hepatocyte transplantation; retrospective immune monitoring suggested the need for additional immunosuppression. Preparative radiation, anti-lymphocyte induction, and frequent immune monitoring were instituted for hepatocyte transplantation in a 27year old female with classical phenylketonuria. Post-transplant liver biopsies demonstrated multiple small clusters of transplanted cells, multiple mitoses, and Ki67 + hepatocytes. Mean peripheral blood phenylalanine (PHE) level fell from pre-transplant levels of 1343±48μM (normal 30–119μM) to 854±25μM (treatment goal ≤360μM) after transplant (36% decrease; p Conclusions Radiation preconditioning and serial rejection risk assessment may produce better engraftment and long-term survival of transplanted hepatocytes. Hepatocyte xenografts engraft for a period of months in non-human primates and may provide effective therapy for patients with acute liver failure. Lay summary Hepatocyte transplantation can potentially be used to treat genetic liver disorders but its application in clinical practice has been impeded by inefficient hepatocyte engraftment and the inability to monitor rejection of transplanted liver cells. In this study, we first show in non-human primates that pretreatment of the host liver with radiation improves the engraftment of transplanted liver cells. We then used this knowledge in a series of clinical hepatocyte transplants in patients with genetic liver disorders to show that radiation pretreatment and rejection risk monitoring are safe and, if optimized, could improve engraftment and long-term survival of transplanted hepatocytes in patients.
- Published
- 2017
- Full Text
- View/download PDF