1. Noninvasive Mapping of Premature Ventricular Contractions by Merging Magnetocardiography and Computed Tomography
- Author
-
Kensuke Sekihara, Takeshi Inaba, Yasuaki Tsumagari, Yoko Ito, Takeshi Machino, Kuniomi Ogata, Akihiko Kandori, Ai Hattori, Yuki Komatsu, Kentaro Yoshida, Satoshi Aita, Kazutaka Aonuma, Hisanori Kosuge, Akihiko Nogami, Hitoshi Horigome, and Masaki Ieda
- Subjects
Adult ,Male ,Heart Ventricles ,medicine.medical_treatment ,Bundle-Branch Block ,Catheter ablation ,030204 cardiovascular system & hematology ,Multimodal Imaging ,03 medical and health sciences ,Imaging, Three-Dimensional ,0302 clinical medicine ,Aortic sinus ,medicine ,Humans ,Ventricular outflow tract ,030212 general & internal medicine ,Interventricular septum ,Endocardium ,Aged ,Aged, 80 and over ,Magnetocardiography ,medicine.diagnostic_test ,business.industry ,Middle Aged ,Sinus of Valsalva ,Ventricular Premature Complexes ,Treatment Outcome ,medicine.anatomical_structure ,Catheter Ablation ,cardiovascular system ,Female ,Right Ventricular Free Wall ,Tomography, X-Ray Computed ,business ,Nuclear medicine ,Electrocardiography - Abstract
Objectives This study aimed to develop a novel premature ventricular contraction (PVC) mapping method to predict PVC origins in whole ventricles by merging a magnetocardiography (MCG) image with a cardiac computed tomography (CT) image. Background MCG can noninvasively discriminate PVCs originating from the aortic sinus cusp from those originating from the right ventricular outflow tract. Methods This study was composed of 22 candidates referred for catheter ablation of idiopathic PVCs. MCG and CT were performed the same day before ablation. Estimated origins by MCG-CT imaging using the recursive null steering spatial filter algorithm were compared with origins determined by electroanatomic mapping (CARTO, Biosense Webster, Inc., Diamond Bar, California) during the ablation procedure. Radiopaque acrylic markers for the CT scan and coil markers generating a weak magnetic field during MCG measurements were used as reference markers to merge the 2 images 3-dimensionally. Results PVC origins were determined by endocardial and epicardial mapping and ablation results in 18 (86%) patients (right ventricular outflow tract in 10 patients, aortic sinus cusp in 2 patients, interventricular septum in 1 patient, near His bundle in 1 patient, right ventricular free wall in 1 patient, and left ventricular free wall in 3 patients). Estimated origins by MCG-CT imaging matched the origins determined during the procedure in 94% (17 of 18) of patients, whereas the electrocardiography algorithms were accurate in only 56% (10 of 18). Discrimination of an epicardium versus an endocardium or right- versus left-sided septum was successful in 3 of 4 patients (75%). Conclusions The diagnostic accuracy of noninvasive MCG-CT mapping was high enough to allow clinical use to predict the site of PVC origins in the whole ventricles.
- Published
- 2019
- Full Text
- View/download PDF