3 results on '"Legoy MD"'
Search Results
2. Nonconventional hydrolytic dehalogenation of 1-chlorobutane by dehydrated bacteria in a continuous solid-gas biofilter.
- Author
-
Erable B, Goubet I, Lamare S, Seltana A, Legoy MD, and Maugard T
- Subjects
- Biodegradation, Environmental, Hydrochloric Acid pharmacology, Hydrogen-Ion Concentration, Hydrolases antagonists & inhibitors, Temperature, Bioreactors, Butanes metabolism, Hydrolases metabolism, Rhodococcus enzymology, Xanthobacter enzymology
- Abstract
Rhodococcus erythropolis NCIMB 13064 and Xanthobacter autotrophicus GJ10 are able to catalyze the conversion of halogenated hydrocarbons to their corresponding alcohols. These strains are attractive biocatalysts for gas phase remediation of polluted gaseous effluents because of their complementary specificity for short or medium and for mono-, di-, or trisubstituted halogenated hydrocarbons (C2-C8 for Rhodococcus erythropolis and C1-C4 for Xanthobacter autotrophicus). After dehydration, these bacteria can catalyze the hydrolytic dehalogenation of 1-chlorobutane in a nonconventional gas phase system under a controlled water thermodynamic activity (a(w)). This process makes it possible to avoid the problems of solubility and bacterial development due to the presence of water in the traditional biofilters. In the aqueous phase, the dehalogenase activity of Rhodococcus erythropolis is less sensitive to thermal denaturation and the apparent Michaelis-Menten constants at 30 degrees C were 0.4 mM and 2.40 micromol min(-1) g(-1) for Km and Vmax, respectively. For Xanthobacter autotrophicus they were 2.8 mM and 0.35 micromol min(-1) g(-1). In the gas phase, the behavior of dehydrated Xanthobacter autotrophicus cells is different from that observed with Rhododcoccus erythropolis cells. The stability of the dehalogenase activity is markedly lower. It is shown that the HCl produced during the reaction is responsible for this low stability. Contrary to Rhodococcus erythropolis cells, disruption of cell walls does not increase the stability of the dehalogenase activity. The activity and stability of lyophilized Xanthobacter autotrophicus GJ10 cells are dependant on various parameters. Optimal dehalogenase activity was determined for water thermodynamic activity (a(w)) of 0.85. A temperature of 30 degrees C offers the best compromise between activity and stability. The pH control before dehydration plays a role in the ionization state of the dehalogenase in the cells. The apparent Michaelis-Menten constants Km and Vmax for the dehydrated Xanthobacter autotrophicus cells were 0.07 (1-chlorobutane thermodynamic activity) and 0.08 micromol min(-1) g(-1) of cells, respectively. A maximal transformation capacity of 1.4 g of 1-chlorobutane per day was finally obtained using 1g of lyophilized Xanthobacter autotrophicus GJ10 cells., (Copyright 2005 Wiley Periodicals, Inc.)
- Published
- 2005
- Full Text
- View/download PDF
3. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
- Author
-
Erable B, Goubet I, Lamare S, Legoy MD, and Maugard T
- Subjects
- Biodegradation, Environmental, Butanes metabolism, Gases chemistry, Gases metabolism, Hydrolysis, Phase Transition, Water chemistry, Water metabolism, Air Pollutants metabolism, Air Pollution prevention & control, Alkanes metabolism, Cell Culture Techniques methods, Hydrolases metabolism, Rhodococcus growth & development, Rhodococcus metabolism
- Abstract
Biofiltration of air polluted by volatile organic compounds is now recognized by the industrial and research communities as an effective and viable alternative to standard environmental technologies. Whereas many studies have focused on solid/liquid/gas biofilters, there have been fewer reports on waste air treatment using other biological processes, especially in a solid/gas biofilter. In this study, a comparison was made of the hydrolysis of halogenated compounds (such as 1-chlorobutane) by lyophilized Rhodococcus erythropolis cells in a novel solid/gas biofilter and in the aqueous phase. We first determined the culture conditions for the production of R. erythropolis cells with a strong dehalogenase activity. Four different media were studied and the amount of 1-chlorobutane was optimized. Next, we report the possibility to use R. erythropolis cells in a solid/gas biofilter in order to transform halogenated compounds in corresponding alcohols. The effect of experimental parameters (total flow into the biofilter, thermodynamic activity of the substrates, temperature, carbon chain length of halogenated substrates) on the activity and stability of lyophilized cells in the gas phase was determined. A critical water thermodynamic activity (a(w)) of 0.4 is necessary for the enzyme to become active and optimal dehalogenase activity for the lyophilized cells is obtained for an a(w) of 0.9. A temperature of reaction of 40 degrees C represents the best compromise between stability and activity. Activation energy of the reaction was determined and found equal to 59.5 KJ/mol. The pH effect on the dehalogenase activity of R. erythropolis cells was also studied in the gas phase and in the aqueous phase. It was observed that pH 9.0 provided the best activity in both systems. We observed that in the aqueous phase R. erythropolis cells were less sensitive to the variation in pH than R. erythropolis cells in the gas phase. Finally, the addition of volatile Lewis base (triethylamine) in the gaseous phase and the action of the lysozyme in order to permeabilize the cells was found to be highly beneficial to the effectiveness of the biofilter., (Copyright 2004 Wiley Periodicals, Inc.)
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.