1. Exercise during hot-water immersion in divers habituated to hot-dry and hot-wet conditions.
- Author
-
Wheelock CE, Looney DP, Potter AW, Pryor RR, Pryor JL, Florian J, and Hostler D
- Subjects
- Body Temperature, Exercise, Hot Temperature, Humans, Male, Water, Diving adverse effects, Immersion
- Abstract
Purpose: Diving in warm water increases thermal risk during exercise compared to thermoneutral waters. The purpose of this study was to evaluate exercise endurance in warm- and hot-water conditions in divers habituated to wet or dry heat., Methods: Nineteen male divers completed this study at the Navy Experimental Diving Unit. Subjects were assigned DRY or WET heat habituation groups. The DRY group (n=9) cycled at 125-150W for one hour in a non-immersed condition (34.4˚C, 50%RH), while the WET group (n=10) cycled at 50W for one hour while immersed in 34.4˚C water. Exercise time to exhaustion was tested on an underwater cycle ergometer in 35.8˚C (WARM) and 37.2˚C (HOT) water at 50W. Core temperature (Tc) was continuously recorded and for all dives., Results: Time to exhaustion was reduced in HOT compared to WARM water (p ≺0.01) in both DRY (92.7 ± 41.6 minutes in 35.8°C vs. 43.4 ± 17.5 minutes in 37.2°C) and WET (95.9 ± 39.2 minutes in 35.8°C vs. 53.4 ± 27.5 minutes in 37.2°C) groups, but did not differ between groups (p=0.62). Rate of Tc rise was greater with higher water temperature (p ≺0.01), but was not different between groups (p=0.68). Maximum Tc (p=0.94 and p=0.95) and Tc change from baseline (p=0.38 and p=0.34) was not different between water temperatures or habituation group, respectively., Conclusion: Endurance decreased with increased water temperature but was not different between WET and DRY. Divers became exhausted at a similar core temperature during WARM- and HOT-water exercise. Mechanisms and applications of heat acclimation for warm-water diving should be further explored., Competing Interests: The authors of this paper declare no conflicts of interest exist with this submission., (Copyright© Undersea and Hyperbaric Medical Society.)
- Published
- 2022