1. Cytokines drive the formation of memory-like NK cell subsets via epigenetic rewiring and transcriptional regulation.
- Author
-
Foltz JA, Tran J, Wong P, Fan C, Schmidt E, Fisk B, Becker-Hapak M, Russler-Germain DA, Johnson J, Marin ND, Cubitt CC, Pence P, Rueve J, Pureti S, Hwang K, Gao F, Zhou AY, Foster M, Schappe T, Marsala L, Berrien-Elliott MM, Cashen AF, Bednarski JJ, Fertig E, Griffith OL, Griffith M, Wang T, Petti AA, and Fehniger TA
- Subjects
- Humans, Gene Expression Regulation immunology, Cell Differentiation immunology, Interleukin-15 immunology, Killer Cells, Natural immunology, Epigenesis, Genetic immunology, Immunologic Memory immunology, Cytokines immunology
- Abstract
Activation of natural killer (NK) cells with the cytokines interleukin-12 (IL-12), IL-15, and IL-18 induces their differentiation into memory-like (ML) NK cells; however, the underlying epigenetic and transcriptional mechanisms are unclear. By combining ATAC-seq, CITE-seq, and functional analyses, we discovered that IL-12/15/18 activation results in two main human NK fates: reprogramming into enriched memory-like (eML) NK cells or priming into effector conventional NK (effcNK) cells. eML NK cells had distinct transcriptional and epigenetic profiles and enhanced function, whereas effcNK cells resembled cytokine-primed cNK cells. Two transcriptionally discrete subsets of eML NK cells were also identified, eML-1 and eML-2, primarily arising from CD56
bright or CD56dim mature NK cell subsets, respectively. Furthermore, these eML subsets were evident weeks after transfer of IL-12/15/18-activated NK cells into patients with cancer. Our findings demonstrate that NK cell activation with IL-12/15/18 results in previously unappreciated diverse cellular fates and identifies new strategies to enhance NK therapies.- Published
- 2024
- Full Text
- View/download PDF