Andrew G. Cridge, Arjuna Rajakumar, Emily C. Jennings, Yi Han, Cédric Finet, Elizabeth J. Duncan, Hsu Chao, Richard A. Gibbs, Li Mei Chiang, Seung-Joon Ahn, Abderrahman Khila, Joshua B. Benoit, Chris Jacobs, Sandra L. Lee, Kim C. Worley, Antonin J.J. Crumière, Markus Friedrich, Séverine Viala, Rajendhran Rajakumar, Andrew J. Rosendale, Harshavardhan Doddapaneni, Maryna P. Lesoway, Travis Chen, Aidamalia Vargas Lowman, Alys M. Cheatle Jarvela, Mackenzie Lovegrove, Daniel S.T. Hughes, Jeffery W. Jones, Shwetha C. Murali, Christopher P. Childers, Donna M. Muzny, Monica Munoz-Torres, Iris M. Vargas Jentzsch, Brenda Oppert, Huyen Dinh, David Armisén, Marie-Julie Favé, Elise M. Didion, Stephen Richards, François Bonneton, William Toubiana, Elena N. Elpidina, Amélie Decaras, Peter N Refki, Monica F. Poelchau, Shannon Dugan, Angelica Lillico-Ouachour, Maria Emilia Santos, Kristen A. Panfilio, Ehab Abouheif, Hugh M. Robertson, Maurijn van der Zee, Alexander G. Martynov, Jiaxin Qu, Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Max Planck Institute for Chemical Ecology, Max-Planck-Gesellschaft, Georgetown University [Washington] (GU), Human Genome Sequencing Center, Baylor College of Medicine, Baylor College of Medicine (BCM), Baylor University-Baylor University, Human Genome Sequencing Center [Houston] (HGSC), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL), Reproduction et développement des plantes (RDP), Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), École pratique des hautes études (EPHE), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de la Recherche Agronomique (INRA), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), and Apollo - University of Cambridge Repository
Background Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. Results Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. Conclusions Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders. Electronic supplementary material The online version of this article (10.1186/s12864-018-5163-2) contains supplementary material, which is available to authorized users.