1. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins.
- Author
-
Efremenko EN, Lyagin IV, Klyachko NL, Bronich T, Zavyalova NV, Jiang Y, and Kabanov AV
- Subjects
- Animals, Aryldialkylphosphatase administration & dosage, Aryldialkylphosphatase chemistry, Aryldialkylphosphatase pharmacokinetics, Female, Insecticides antagonists & inhibitors, Male, Mice, Inbred BALB C, Neurotoxins antagonists & inhibitors, Organophosphorus Compounds antagonists & inhibitors, Organophosphorus Compounds toxicity, Paraoxon antagonists & inhibitors, Rats, Sprague-Dawley, Aryldialkylphosphatase therapeutic use, Insecticides toxicity, Neurotoxins toxicity, Organophosphate Poisoning prevention & control, Paraoxon toxicity
- Abstract
A simple and highly efficient catalytic scavenger of poisonous organophosphorus compounds, based on organophosphorus hydrolase (OPH, EC 3.1.8.1), is produced in aqueous solution by electrostatic coupling of the hexahistidine tagged OPH (His
6 -OPH) and poly(ethylene glycol)-b-poly(l-glutamic acid) diblock copolymer. The resulting polyion complex, termed nano-OPH, has a spherical morphology and a diameter from 25nm to 100nm. Incorporation of His6 -OPH in nano-OPH preserves catalytic activity and increases stability of the enzyme allowing its storage in aqueous solution for over a year. It also decreases the immune and inflammatory responses to His6 -OPH in vivo as determined by anti-OPH IgG and cytokines formation in Sprague Dawley rats and Balb/c mice, respectively. The nano-OPH pharmacokinetic parameters are improved compared to the naked enzyme suggesting longer blood circulation after intravenous (iv) administrations in rats. Moreover, nano-OPH is bioavailable after intramuscular (im), intraperitoneal (ip) and even transbuccal (tb) administration, and has shown ability to protect animals from exposure to a pesticide, paraoxon and a warfare agent, VX. In particular, a complete protection against the lethal doses of paraoxon was observed with nano-OPH administered iv and ip as much as 17h, im 5.5h and tb 2h before the intoxication. Further evaluation of nano-OPH as a catalytic bioscavenger countermeasure against organophosphorus chemical warfare agents and pesticides is warranted., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF