1. Targeted inhibition of Janus kinases abates interfon gamma-induced invasive behaviour of fibroblast-like synoviocytes.
- Author
-
Karonitsch T, Beckmann D, Dalwigk K, Niederreiter B, Studenic P, Byrne RA, Holinka J, Sevelda F, Korb-Pap A, Steiner G, Smolen JS, Pap T, and Kiener HP
- Subjects
- Adult, Arthritis, Rheumatoid drug therapy, Azetidines pharmacology, Cell Culture Techniques, Cell Movement physiology, Cells, Cultured, Female, Focal Adhesion Kinase 1 physiology, Humans, Janus Kinase Inhibitors pharmacology, Male, Middle Aged, Purines, Pyrazoles, RNA, Small Interfering pharmacology, Sulfonamides pharmacology, Arthritis, Rheumatoid metabolism, Fibroblasts metabolism, Interferon-gamma physiology, Janus Kinase 2 antagonists & inhibitors, Synoviocytes metabolism
- Abstract
Objectives: The aim was to explore the function of the T-cell cytokine IFNγ for mesenchymal tissue remodelling in RA and to determine whether IFNγ signalling controls the invasive potential of fibroblast-like synoviocytes (FLS)., Methods: To assess architectural responses, FLS were cultured in three-dimensional micromasses. FLS motility was analysed in migration and invasion assays. Signalling events relevant to cellular motility were defined by western blots. Baricitinib and small interfering RNA pools were used to suppress Janus kinase (JAK) functions., Results: Histological analyses of micromasses revealed unique effects of IFNγ on FLS shape and tissue organization. This was consistent with accelerated migration upon IFNγ stimulation. Given that cell shape and cell motility are under the control of the focal adhesion kinase (FAK), we next analysed its activity. Indeed, IFNγ stimulation induced the phosphorylation of FAK-Y925, a phosphosite implicated in FAK-mediated cell migration. Small interfering RNA knockdown of JAK2, but not JAK1, substantially abrogated FAK activation by IFNγ. Correspondingly, IFNγ-induced FAK activation and invasion of FLS was abrogated by the JAK inhibitor, baricitinib., Conclusion: Our study contributes insight into the synovial response to IFNγ and reveals JAK2 as a potential therapeutic target for FLS-mediated joint destruction in arthritis, especially in RA., (© The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com)
- Published
- 2018
- Full Text
- View/download PDF