1. The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study
- Author
-
Thomas E. White, Imre Pavo, Markku Laakso, Søren Brunak, Mark I. McCarthy, Jerzy Adamski, Ana Viñuela, Femke Rutters, Anubha Mahajan, Joline W.J. Beulens, Torben Hansen, Jimmy D. Bell, Hartmut Ruetten, Robert W. Koivula, Giuseppe N. Giordano, E. Louise Thomas, Soren Brage, Naeimeh Atabaki-Pasdar, Andrea Mari, Harriet Teare, Paul W. Franks, Jochen M. Schwenk, Azra Kurbasic, Emmanouil T. Dermitzakis, Gary Frost, Ian M Forgie, Timothy J. McDonald, Federico De Masi, Ewan R. Pearson, Oluf Pedersen, Tarja Kokkola, Andrew T. Hattersley, Mark Walker, Tue H. Hansen, Koivula, Robert W. [0000-0002-1646-4163], Apollo - University of Cambridge Repository, IMI, Epidemiology and Data Science, APH - Health Behaviors & Chronic Diseases, APH - Aging & Later Life, ACS - Diabetes & metabolism, and ACS - Heart failure & arrhythmias
- Subjects
Endocrinology, Diabetes and Metabolism ,Type 2 diabetes ,0302 clinical medicine ,Glycaemic control ,Medicine ,Prediabetes ,ASSOCIATIONS ,Beta Cell Function ,Ectopic Fat ,Glycaemic Control ,Insulin Sensitivity ,Physical Activity ,Structural Equation Modelling ,Type 2 Diabetes ,RISK ,INSULIN-RESISTANCE ,0303 health sciences ,Insulin sensitivity ,ddc ,ETIOLOGY ,3. Good health ,Structural equation modelling ,Cohort ,SENSITIVITY ,Life Sciences & Biomedicine ,BEHAVIOR ,medicine.medical_specialty ,Physical activity ,030209 endocrinology & metabolism ,Article ,Ectopic fat ,1117 Public Health and Health Services ,Endocrinology & Metabolism ,03 medical and health sciences ,BETA-CELL FUNCTION ,SDG 3 - Good Health and Well-being ,Diabetes mellitus ,Internal medicine ,Internal Medicine ,IMI DIRECT Consortium ,Beta (finance) ,030304 developmental biology ,Science & Technology ,business.industry ,1103 Clinical Sciences ,Beta cell function ,FAT-CONTENT ,medicine.disease ,Endocrinology ,LIVER FAT ,1114 Paediatrics and Reproductive Medicine ,Blood sugar regulation ,business - Abstract
Aims/hypothesis It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.
- Published
- 2020