1. Hydrogen gas improves left ventricular hypertrophy in Dahl rat of salt-sensitive hypertension
- Author
-
Kozue Takeda, Masatoshi Ichihara, Katsunori Hashimoto, Seiko Miyata, Takuya Watanabe, Akiko Noda, Kazuko Kato, Takashi Iwamoto, Nozomi Okumura, Miki Nagahara, Hiroki Matsuoka, and Sayaka Sobue
- Subjects
Male ,medicine.medical_specialty ,Physiology ,Blood Pressure ,030204 cardiovascular system & hematology ,Left ventricular hypertrophy ,Ventricular Function, Left ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,Internal Medicine ,medicine ,Animals ,030212 general & internal medicine ,Myocardial infarction ,Sodium Chloride, Dietary ,LV hypertrophy ,Stroke ,Rats, Inbred Dahl ,business.industry ,Significant difference ,General Medicine ,medicine.disease ,Rats ,Blood pressure ,Echocardiography ,Salt sensitivity ,Hypertension ,Room air distribution ,Cardiology ,Hypertrophy, Left Ventricular ,Gases ,business ,Hydrogen - Abstract
Purpose Hypertension is an important risk factor for death resulting from stroke, myocardial infarction, and end-stage renal failure. Hydrogen (H2) gas protects against many diseases, including ischemia-reperfusion injury and stroke. The effects of H2 on hypertension and its related left ventricular (LV) function have not been fully elucidated. The purpose of this study was to investigate the effects of H2 gas on hypertension and LV hypertrophy using echocardiography. Methods Dahl salt-sensitive (DS) rats were randomly divided into three groups: those fed an 8% NaCl diet until 12 weeks of age (8% NaCl group), those additionally treated with 2% H2 gas (8% NaCl + 2% H2 group), and control rats maintained on a diet containing 0.3% NaCl until 12 weeks of age (0.3% NaCl group). H2 gas was supplied through a gas flowmeter and delivered by room air (2% hydrogenated room air, flow rate of 10 L/min) into a cage surrounded by an acrylic chamber. We evaluated interventricular septal wall thickness (IVST), LV posterior wall thickness (LVPWT), and LV mass using echocardiography. Results IVST, LVPWT, and LV mass were significantly higher in the 8% NaCl group than the 0.3% NaCl group at 12 weeks of age, whereas they were significantly lower in the 8% NaCl + 2% H2 group than the 8% NaCl group. There was no significant difference in systolic blood pressure between the two groups. Conclusion Our findings suggest that chronic H2 gas inhalation may help prevent LV hypertrophy in hypertensive DS rats.
- Published
- 2018
- Full Text
- View/download PDF