1. Extended Isolation Forest for Intrusion Detection in Zeek Data.
- Author
-
Moomtaheen, Fariha, Bagui, Sikha S., Bagui, Subhash C., and Mink, Dustin
- Subjects
- *
COMPUTER network traffic , *ALGORITHMS , *RECONNAISSANCE operations - Abstract
The novelty of this paper is in determining and using hyperparameters to improve the Extended Isolation Forest (EIF) algorithm, a relatively new algorithm, to detect malicious activities in network traffic. The EIF algorithm is a variation of the Isolation Forest algorithm, known for its efficacy in detecting anomalies in high-dimensional data. Our research assesses the performance of the EIF model on a newly created dataset composed of Zeek Connection Logs, UWF-ZeekDataFall22. To handle the enormous volume of data involved in this research, the Hadoop Distributed File System (HDFS) is employed for efficient and fault-tolerant storage, and the Apache Spark framework, a powerful open-source Big Data analytics platform, is utilized for machine learning (ML) tasks. The best results for the EIF algorithm came from the 0-extension level. We received an accuracy of 82.3% for the Resource Development tactic, 82.21% for the Reconnaissance tactic, and 78.3% for the Discovery tactic. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF